The Conifers

  • David B. Neale
  • Nicholas C. Wheeler


The conifers are a diverse and ancient group of seed plants of monophyletic origin that arose more than 300 million years ago (Rothwell and Scheckler 1988). They are uniformly distinguished by their naked or exposed ovules during pollination, a trait they share with the cycads, the monotypic genus Ginkgo, and the gnetophytes. Collectively, these four taxa comprise the gymnosperms, which, along with the flowering plants (angiosperms), constitute the seed-bearing plants (Fig. 1.1).


  1. Adams, W. T., & Burczyk, J. (2000). Magnitude and implications of gene flow in gene conservation reserves. In A. Young, D. Boshier, & T. Boyle (Eds.), Forest conservation genetics: Principles and practice (pp. 215–244). Oxon/Collingwood: Commonwealth Scientific and Industrial Research Organization (CSIRO) Publishing/CABI Publishing.CrossRefGoogle Scholar
  2. Adie, H., & Lawes, M. J. (2011). Podocarps in Africa: Temperate zone relicts or rainforest survivors? In B. L. Turner & L. A. Cernusak (Eds.), Ecology of the Podocarpaceae in tropical forests (Smithsonian Contributions to Botany, No. 95) (pp. 79–100). Washington, D.C.: Smithsonian Institution Scholarly Press.Google Scholar
  3. Axelrod, D. I. (1959). Late tertiary evolution of the Sierran big-tree forest. Evolution, 13, 9–23.CrossRefGoogle Scholar
  4. Axelrod, D. I. (1964). The Miocene Trapper Creek flora of southern Idaho: University of California Publications in Geological. Science, 51, 1–148.Google Scholar
  5. Bannister, M. (1965). Forest Research Institute, Rotorua, New Zealand. In The genetics of colonizing species: proceedings (p. 353). New York: Academic Press.Google Scholar
  6. Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519–549.CrossRefGoogle Scholar
  7. Brown, P. M. (2013). Rocky Mountain tree-ring research, OldList, a database of old trees. Accessed 21 Oct 2017.
  8. Brundrett, M. C. (2008). Evolution of mycorrhizas. In Mycorrhizal associations: The web resource. Accessed 21 Oct 2017.
  9. Burczyk, J., Lewandowski, A., & Chalupka, W. (2004a). Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 197(1), 39–48.CrossRefGoogle Scholar
  10. Burczyk, J., DiFazio, S. P., & Adams, W. T. (2004b). Gene flow in forest trees: How far do genes really travel? Forest Genetics, 11(3/4), 179.Google Scholar
  11. Christenhusz, M. J. M., Reveal, J. L., Farjon, A., Gardner, M. F., Mill, R. R., & Chase, M. W. (2011). A new classification and linear sequence of extant gymnosperms. Phytotaxa, 19, 55–70.CrossRefGoogle Scholar
  12. Coomes, D. A., Allen, R. B., Bentley, W. A., Burrows, L. E., Canham, C. D., Fagan, L., Forsyth, D. M., Gaxiola-Alcantar, A., Parfitt, R. L., Ruscoe, W. A., Wardle, D. A., Wilson, D. J., & Wright, E. F. (2005). The hare, the tortoise and the crocodile: The ecology of angiosperm dominance, conifer persistence and fern filtering. Journal of Ecology, 93, 918–935.CrossRefGoogle Scholar
  13. Critchfield, W. B. (1985). The late quaternary history of lodgepole and jack pines. Canadian Journal of Forest Research, 15(5), 749–772.CrossRefGoogle Scholar
  14. Critchfield, W. B., & Little, E. L., Jr. (1966). Geographic distribution of the pines of the world (no. 991). Washington, D.C.: US Department of Agriculture, Forest Service.Google Scholar
  15. Cronquist, A., Takhtajan, A., & Zimmermann, W. (1966). On the higher taxa of Embryobionta. Taxon, 15(4), 129–134.CrossRefGoogle Scholar
  16. Dallimore, W., Jackson, A. B., & Harrison, S. G. (1967). A handbook of Coniferae and Ginkgoaceae (4th ed.). New York: St. Martin’s Press.Google Scholar
  17. Daubenmire, R. (1968). Plant communities: A textbook of plant synecology. New York: Harper and Row, Publishers.Google Scholar
  18. Debazac, E. F. (1964). Manuel des Coniferes. Nancy: Ecole Nationale des Eaus et Forets.Google Scholar
  19. Di-Giovanni, F., & Kevan, P. (1991). Factors affecting pollen dynamics and its importance to pollen contamination: A review. Canadian Journal of Forest Research, 21, 1155–1170.CrossRefGoogle Scholar
  20. Earle, C. J. (Ed.). (1997–2017). Gymnosperm database. Accessed 21 Oct 2017.
  21. Earle, C. J. (2011). Conifer longevity. In C. J. Earle (Ed.) (1997–2017) Gymnosperm database. Accessed 21 Oct 2017.
  22. Eckenwalder, J. E. (2009). Conifers of the world. Portland: Timber Press.Google Scholar
  23. Erickson, V. J., & Adams, W. T. (1989). Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Canadian Journal of Forest Research, 19, 1248–1255.CrossRefGoogle Scholar
  24. Farjon, A. (2001). World checklist and bibliography of conifers (2nd ed.). Kew: Royal Botanic Gardens.Google Scholar
  25. Farjon, A. (2005). A monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
  26. Farjon, A. (2008). A natural history of conifers. Portland: Timber Press.Google Scholar
  27. Farjon, A. (2010). A handbook of the world’s conifers. Leiden, The Netherlands: Brill Academic Publishers.CrossRefGoogle Scholar
  28. Farjon, A., & Filer, D. (2013). An atlas of the world’s conifers: An analysis of their distribution, biogeography, diversity and conservation status. Leiden, The Netherlands: Brill Academic Publishers.CrossRefGoogle Scholar
  29. Farjon, A., Hiep, N. T., Harder, D. K., Loc, P. K., & Averyanov, L. (2002). A new genus and species in Cupressaceae (Coniferales) from northern Vietnam, Xanthocyparis vietnamensis. Novon, 12(2), 179–189.CrossRefGoogle Scholar
  30. Fowler, D. P., & Park, Y. S. (1983). Population studies of white spruce. I. Effects of self-pollination. Canadian Journal of Forest Research, 13, 1133–1138.CrossRefGoogle Scholar
  31. Gernandt, D. S., Willyard, A., Syring, J. V., & Liston, A. (2011). The conifers (Pinophyta). In C. Plomion, J. Bousquet, & C. Kole (Eds.), Genetics, genomics and breeding of conifers (pp. 1–39). Enfield: Science Publishers.Google Scholar
  32. Griffin, J. R., & Critchfield, W. B. (1976). The distribution of forest trees in California. USDA Forest Service Res Paper PSW-82.Google Scholar
  33. He, C. Y., Zhang, J. G., & Duan, A. G. (2012b). Physiological and protein responses to drought in four pine seedlings. Silvae Genetica, 61(3), 93–103.CrossRefGoogle Scholar
  34. Howe, G. T., Aitken, S. N., Neale, D. B., Jermstad, K. D., Wheeler, N. C., & Chen, T. H. H. (2003). From genotype to phenotype: Unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany, 81, 1247–1266.CrossRefGoogle Scholar
  35. IUCN. (2017). The IUCN red list of threatened species.
  36. Jones, W. G., Hill, K. D., & Allen, J. M. (1995). Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea, 6, 173–176.CrossRefGoogle Scholar
  37. Kauffmann, M. E. (2012). Conifer country. Kneeland: Backcountry Press.Google Scholar
  38. Keeley, J. E. (2012). Ecology and evolution of pine life histories. Annals of Forest Science, 69(4), 445–453.CrossRefGoogle Scholar
  39. Keeley, J. E., & Zedler, P. H. (1998). Evolution of life histories in Pinus. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (pp. 219–249). Cambridge, UK: Cambridge University Press.Google Scholar
  40. Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16, 406–411.CrossRefGoogle Scholar
  41. Koski, V. (1970). A study of pollen dispersal as a mechanism of gene flow in conifers. Communicationes Instituti Forestalis Fenniae, 70(4), 1–78.Google Scholar
  42. Lamant, T. (2012). Vegetative reproduction in gymnosperms. Bulletin de l’Association des Parcs Botaniques de France, n 53.Google Scholar
  43. Lamont, B., Lemaitre, D., Cowling, R., & Enright, N. (1991). Canopy seed storage in woody-plants. The Botanical Review, 57(4), 277–317.CrossRefGoogle Scholar
  44. Lanner, R. M. (1966). Needed: A new approach to the study of pollen dispersion. Silvae Genetica, 15, 50–52.Google Scholar
  45. Leslie, A. B., Beaulieu, U. J. M., Rai, H. S., Crane, P. R., Donoghue, M. J., & Mathews, S. (2012). Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16217–16221.CrossRefGoogle Scholar
  46. Li, M., & Ritchie, G. A. (1999a). Eight hundred years of clonal forestry in China: I. traditional afforestation with Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New Forests, 18, 131–142.CrossRefGoogle Scholar
  47. Li, M., & Ritchie, G. A. (1999b). Eight hundred years of clonal forestry in China: II. Mass production of rooted cuttings of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New Forests, 18, 143–159.CrossRefGoogle Scholar
  48. MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography (Vol. 1). Princeton: Princeton University Press.Google Scholar
  49. Malloch, D. W., Pirozynski, K. A., & Raven, P. H. (1980). Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proceedings of the National Academy of Sciences of the United States of America, 77(4), 2113–2118.CrossRefGoogle Scholar
  50. Mao, K., Milne, R. I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R. R., & Renner, S. S. (2012). Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7793–7798.CrossRefGoogle Scholar
  51. Mirov, N. T. (1967). The genus Pinus. New York: The Ronald Press Co.Google Scholar
  52. Molina, R., & Trappe, J. M. (1984). Mycorrhiza management in bareroot nurseries. In M. L. Duryea & T. D. Landis (Eds.), Forestry nursery manual: Production of bareroot seedlings (pp. 211–223). The Netherlands: Springer.CrossRefGoogle Scholar
  53. Moss, S. J., & Wilson, M. E. J. (1998). Biogeographic implications from the Tertiary palaeogeographic evolution of Sulawesi and Borneo. In R. Hall & J. D. Holloway (Eds.), Biogeography and geological evolution of SE Asia (pp. 133–163). Leiden: Backhuys.Google Scholar
  54. Muir, P. S., & Lotan, J. E. (1985). Disturbance history and serotiny in Pinus contorta in Western Montana. Ecology, 66, 1658–1668.CrossRefGoogle Scholar
  55. Nakamura, R. R., & Wheeler, N. C. (1992a). Pollen competition and paternal success in Douglas-fir. Evolution, 46(3), 846–851.CrossRefGoogle Scholar
  56. Nakamura, R. R., & Wheeler, N. C. (1992b). Self-fertility variation and paternal success through outcrossing in Douglas-fir. Theoretical and Applied Genetics, 83, 851–854.CrossRefGoogle Scholar
  57. Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15(3), R59. Scholar
  58. Owens, J. N. & Blake, M. D. (1985). Forest tree seed production. A review of the literature and recommendations for future research. Information Report – Petawawa National Forestry Institute, Canadian Forestry Service No. PI-X-53 + 161 pp.Google Scholar
  59. Pausas, J. G., & Keeley, J. E. (2009). A burning story, the role of fire in the history of life. Bioscience, 59, 593–601.CrossRefGoogle Scholar
  60. Peattie, D. C. (1953). A natural history of western trees. Bonanza Books/Crown Publ, New York.Google Scholar
  61. Pharis, R. P., & Morf, W. (1967). Experiments on the precocious flowering of western red cedar and four species of Cupressus with gibberellins A3 and A4/A7 mixture. Canadian Journal of Botany, 45(9), 1519–1524.CrossRefGoogle Scholar
  62. Piesch, R. F., & Stettler, R. F. (1971). The detection of good selfers for haploid induction in Douglas-fir. Silvae Genetica, 20(4), 144–148.Google Scholar
  63. Pojar, J., & MacKinnon, A. (Eds.). (2004). The plants of the Pacific Northwest Coast (Revised). Vancouver: Lone Pine Publishing.Google Scholar
  64. Raubeson, L. A., & Jansen, R. K. (1992). A rare chloroplast-DNA structural mutation is shared by all conifers. Biochemical Systematics and Ecology, 20, 17–24.CrossRefGoogle Scholar
  65. Richardson, D. M., & Rundel, P. W. (1998). Ecology and biogeography of Pinus: An introduction. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus. Cambridge, UK: Cambridge University Press.Google Scholar
  66. Ritchie, G. A. (1991). The commercial use of conifer rooted cuttings in forestry: A world overview. New Forests, 5, 247–275.CrossRefGoogle Scholar
  67. Rothwell, G. W., & Scheckler, S. E. (1988). Biology of ancestral gymnosperms. In C. B. Beck (Ed.), Origin and evolution of gymnosperms. New York: Columbia University Press.Google Scholar
  68. Sawyer, J. O. (2006). Northwest California. Berkeley: University of California Press.Google Scholar
  69. Smith, W. K., & Brewer, C. A. (1994). The adaptive importance of shoot and crown architecture in conifer trees. The American Naturalist, 143(3), 528–532.CrossRefGoogle Scholar
  70. Sorensen, F. (1969). Embryonic genetic load in coastal Douglas-fir, Pseudotsuga menziesii var. menziesii. The American Naturalist, 103, 389–398.CrossRefGoogle Scholar
  71. Sorensen, F., & Miles, R. S. (1974). Self-pollination effects on Douglas-fir and ponderosa pine seeds and seedlings. Silvae Genetica, 23, 135–138.Google Scholar
  72. Stevenson, D. (1991). Flora of the Guianas, Series A: Phanerogams, Fascicle 9, Sections 208 Cycadaceae, 208.1 Zamiaceae, and 211 Podocarpaceae. Koeltz Scientific Books, USA/Germany.Google Scholar
  73. Stewart, G. H. (2002). Structure and canopy tree species regeneration requirements in indigenous forests, Westland, New Zealand (Doc Science Internal Series 66). Wellington: Department of Conservation.Google Scholar
  74. Strauss, S. H., & Doerksen, A. H. (1990). Restriction fragment analysis of pine phylogeny. Evolution, 44, 1081–1096.CrossRefGoogle Scholar
  75. Strauss, S. H., Palmer, J. D., Howe, G. T., & Doerksen, A. H. (1988). Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proceedings of the National Academy of Sciences, 85(11), 3898–3902.CrossRefGoogle Scholar
  76. Takhtajan, A. (1986). (T. J. Crovello, Trans.). In A. Cronquist (Ed.). Floristic regions of the world. Berkeley: University of California Press.Google Scholar
  77. Toda, R. (1974). Vegetative propagation in relation to Japanese forest tree improvement. New Zealand J For Sci, 4, 410–417.Google Scholar
  78. Van Pelt, R. (2001). Forest giants of North America. Seattle: University of Washington Press.Google Scholar
  79. Vander Wall, S. B., & Balda, R. P. (1977). Coadaptation of the Clark’s Nutcracker and the pinon pine for efficient seed harvest and dispersal. Ecological Monographs, 47, 89–111.CrossRefGoogle Scholar
  80. Verkaik, E., Gardner, R. O., & Braakhekke, W. G. (2007). Site conditions affect seedling distribution below and outside the crown of kauri trees (Agathis australis). New Zealand J Ecol, 31(1), 13–21.Google Scholar
  81. Wallace, A. R. (1876). The geographical distribution of animals. London: Harper and Brothers.Google Scholar
  82. Wheeler, N. C., & Bramlett, D. (1990). Operational flower stimulation treatments in a young loblolly pine (Pinus taeda L.) seed orchard. Southern Journal of Applied Forestry, 15(1), 44–50.Google Scholar
  83. Wheeler, N. C., & Jech, K. S. (1992). The use of electrophoretic markers in seed orchard research. New Forests, 6, 311–328.CrossRefGoogle Scholar
  84. Wheeler, N. C., Wample, R. L., & Pharis, R. P. (1980). Promotion of flowering in the Pineaceae by gibberellins. IV. Seedlings and sexually mature grafts of lodgepole pine. Physiologia Plantarum, 50, 340–346.CrossRefGoogle Scholar
  85. Wheeler, N. C., Masters, C. J., Cade, S. C., Ross, S. D., Keeley, J. W., & Hsin, L. Y. (1985). Girdling: An effective and practical treatment for enhancing seed yields in Douglas-fir seed orchards. Canadian Journal of Forest Research, 15(3), 505–510.CrossRefGoogle Scholar
  86. White, T. L., Adams, W. T., & Neale, D. B. (2007a). Forest genetics. Cambridge, MA: CABI Publishing.CrossRefGoogle Scholar
  87. Wikipedia contributors (2017) Árbol del Tule. Wikipedia, The Free Encyclopedia, 19 May 2017. Accessed 21 Oct 2017.
  88. Wilcox, M. D. (1983). Inbreeding depression and genetic variances estimated from self- and cross-pollinated families of Pinus radiata. Silvae Genetica, 32, 89–96.Google Scholar
  89. Williams, C. G. (2009). Conifer reproductive biology. Dordrecht/Heidelberg/London/New York: Springer.CrossRefGoogle Scholar
  90. Yang, Y., Zhang, D., Luscombe, D., Liao, W., Farjon, A., Katsuki, T., Xiang, Q., & Li, N. (2013). Abies beshanzuensis. The IUCN red list of threatened species 2013: e.T32318A2814360. Accessed 19 Oct 2017.
  91. Zhao, G., Sun, M., Wilde, S. A., & Li, S. Z. (2004). A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67, 91–123.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David B. Neale
    • 1
  • Nicholas C. Wheeler
    • 2
  1. 1.Department of Plant SciencesUniversity of California, DavisDavisUSA
  2. 2.ConsultantCentraliaUSA

Personalised recommendations