Skip to main content

ProofScript: Proof Scripting for the Masses

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2016 (ICTAC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9965))

Included in the following conference series:

Abstract

The goal of the ProofPeer project is to make collaborative theorem proving a reality. An important part of our plan to make this happen is ProofScript, a language designed to be the main user interface of ProofPeer. Of foremost importance in the design of ProofScript is its fit within a collaborative theorem proving environment. By this we mean that it needs to fit into an environment where peers who are not necessarily part of the current theorem proving and programming language communities work independently from but collaboratively with each other to produce formal definitions and proofs. All aspects of ProofScript are shaped by this design principle. In this paper we will discuss ProofScript’s most important aspect of being an integrated language both for interactive proof and for proof scripting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ProofPeer. http://www.proofpeer.net

  2. Obua, S., Fleuriot, J., Scott, P., Aspinall, D.: ProofPeer: Collaborative Theorem Proving. arXiv: 1404.6186 (2013)

  3. ProofScript. http://proofpeer.net/topics/proofscript

  4. Obua, S., Scott, P., Fleuriot, J.: Local Lexing. http://proofpeer.net/papers/locallexing

  5. Scott, P., Obua, S., Fleuriot, J.: Bootstrapping LCF Declarative Proofs. http://proofpeer.net/papers/bootstrapping

  6. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). doi:10.1007/3-540-48256-3_12

    Chapter  Google Scholar 

  7. Agerholm, S., Gordon, M.: Experiments with ZF set theory in HOL and Isabelle. In: Thomas Schubert, E., Windley, P.J., Alves-Foss, J. (eds.) TPHOLs 1995. LNCS, vol. 971, pp. 32–45. Springer, Heidelberg (1995). doi:10.1007/3-540-60275-5_55

    Chapter  Google Scholar 

  8. ProofPeer Root Theory. http://proofpeer.net/repository?root.thy

  9. Matichuk, D., Wenzel, M., Murray, T.: An Isabelle proof method language. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 390–405. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08970-6_25

    Google Scholar 

  10. Gordon, M., Milner, A., Wadsworth, C.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979). doi:10.1007/3-540-09724-4

    MATH  Google Scholar 

  11. Obua, S.: Purely Functional Structured Programming. arXiv:1007.3023 (2010)

  12. Okasaki, C.: In praise of mandatory indentation for novice programmers, February 2008. http://okasaki.blogspot.co.uk/2008/02/in-praise-of-mandatory-indentation-for.html

  13. Landin, P.: The Next 700 Programming Languages (1966). doi:10.1145/365230.365257

    Google Scholar 

  14. Paulson, L.: Set theory for verification: I. From foundations to functions. J. Autom. Reason. 11(3), 353–389 (1993). doi:10.1007/BF00881873

    Article  MathSciNet  MATH  Google Scholar 

  15. Paulson, L.: Set theory for verification: II. Induction and recursion. J. Autom. Reason. 15, 167–215 (1995). doi:10.1007/BF00881916

    Article  MathSciNet  MATH  Google Scholar 

  16. Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 272–286. Springer, Heidelberg (2006). doi:10.1007/11921240_19

    Chapter  Google Scholar 

  17. Obua, S., Fleuriot, J., Scott, P., Aspinall, D.: Type inference for ZFH. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 87–101. Springer, Heidelberg (2015). doi:10.1007/978-3-319-20615-8_6

    Chapter  Google Scholar 

  18. Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. In: Schroeder-Heister, P. (ed.) ELP 1989. LNCS, vol. 475, pp. 253–281. Springer, Heidelberg (1991). doi:10.1007/BFb0038698

    Chapter  Google Scholar 

  19. Nipkow, T.: Functional Unification of Higher-Order Patterns (1993). doi:10.1109/LICS.1993.287599

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Obua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Obua, S., Scott, P., Fleuriot, J. (2016). ProofScript: Proof Scripting for the Masses. In: Sampaio, A., Wang, F. (eds) Theoretical Aspects of Computing – ICTAC 2016. ICTAC 2016. Lecture Notes in Computer Science(), vol 9965. Springer, Cham. https://doi.org/10.1007/978-3-319-46750-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46750-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46749-8

  • Online ISBN: 978-3-319-46750-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics