Unification for \(\lambda \)-calculi Without Propagation Rules

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9965)

Abstract

We present a unification procedure for calculi with explicit substitutions (ES) without propagation rules. The novelty of this work is that the unification procedure was developed for the calculi with ES that belong to the paradigm known as “act at a distance”, i.e. explicit substitutions are not propagated to the level of variables, as usual. The unification procedure is proved correct and complete, and enjoy a simple form of substitution, called grafting, instead of the standard capture avoiding variable substitution.

References

  1. 1.
    Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. J. Funct. Program. 1(4), 375–416 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: Tiwari [36], pp. 6–21Google Scholar
  3. 3.
    Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Jeuring, J., Chakravarty, M.M.T. (eds.) Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming, Gothenburg, Sweden, 1–3 September 2014, pp. 363–376. ACM (2014)Google Scholar
  4. 4.
    Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization theorem. In: Jagannathan, S., Sewell, P. (eds.) POPL, pp. 659–670. ACM (2014)Google Scholar
  5. 5.
    Accattoli, B., Kesner, D.: The structural \(\lambda \)-calculus. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15205-4_30 CrossRefGoogle Scholar
  6. 6.
    Accattoli, B., Kesner, D.: The permutative \(\lambda \)-calculus. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 23–36. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6_5 CrossRefGoogle Scholar
  7. 7.
    Accattoli, B., Kesner, D.: Preservation of strong normalisation modulo permutations for the structural lambda-calculus. Logical Methods Comput. Sci. 8(1), 1–44 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Accattoli, B., Dal Lago, U.: On the invariance of the unitary cost model for head reduction. In: Tiwari [36], pp. 22–37Google Scholar
  9. 9.
    Ayala-Rincón, M., Kamareddine, F.: Unification via the \(\lambda s_e\)-style of explicit substitution. Logical J. IGPL 9(4), 489–523 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Ayala-Rincón, M., Kamareddine, F.: On applying the \(\lambda s_e\)-style of unification for simply-typed higher order unification in the pure lambda calculus. Matemática Contemporânea 24, 1–22 (2003)MATHGoogle Scholar
  11. 11.
    de Moura, F.L.C., Kesner, D., Ayala-Rincón, M.: Metaconfluence of calculi with explicit substitutions at a distance. In: Raman, V., Suresh, S.P. (eds.) 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), vol. 29, pp. 391–402. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2014)Google Scholar
  12. 12.
    de Moura, F.L.C.: Higher-order unification via explicit substitutions at a distance. In: LSFA 2014 (2014). Accepted for short presentationGoogle Scholar
  13. 13.
    de Moura, F.L.C., Ayala-Rincón, M., Kamareddine, F.: Higher-order unification: a structural relation between Huet’s method and the one based on explicit substitutions. J. Appl. Logic 6(1), 72–108 (2008)CrossRefMATHGoogle Scholar
  14. 14.
    de Moura, F.L.C., Kamareddine, F., Ayala-Rincón, M.: Second-order matching via explicit substitutions. In: Baader, F., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3452, pp. 433–448. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32275-7_29 CrossRefGoogle Scholar
  15. 15.
    Dougherty, D.J.: Higher-order unification via combinators. TCS 114(2), 273–298 (1993)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dowek, G.: Third order matching is decidable. APAL 69, 135–155 (1994)MathSciNetMATHGoogle Scholar
  17. 17.
    Dowek, G.: Higher-order unification and matching. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 1009–1062. MIT press and Elsevier (2001). Chap. 16Google Scholar
  18. 18.
    Dowek, G., Hardin, T., Kirchner, C.: Higher order unification via explicit substitutions. Inf. Comput. 157(1–2), 183–235 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Briaud, D., Lescanne, P., Rouyer-Degli, J.: \(\lambda \upsilon \), a calculus of explicit substitutions which preserves strong normalization. JFP 6(5), 699–722 (1996)MathSciNetMATHGoogle Scholar
  20. 20.
    Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Goldfarb, W.: The undecidability of the second-order unification problem. Theoret. Comput. Sci. 13(2), 225–230 (1981)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Guillaume, B.: The \(\lambda s_e\)-calculus does not preserve strong normalization. J. Func. Program. 10(4), 321–325 (2000)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Huet, G.: The undecidability of unification in third order logic. Inf. Control 22(3), 257–267 (1973)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Huet, G.: A unification algorithm for typed lambda-calculus. TCS 1(1), 27–57 (1975)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Huet, G.: Résolution d’équations dans les langages d’ordre 1,2,..,\(\omega \). Ph.D. thesis, University Paris-7 (1976)Google Scholar
  26. 26.
    Kamareddine, F., Ríos, A.: Extending a \(\lambda \)-calculus with explicit substitution which preserves strong normalisation into a confluent calculus on open terms. J. Func. Program. 7, 395–420 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kesner, D.: A theory of explicit substitutions with safe and full composition. Logical Methods Comput. Sci. 5(31), 1–29 (2009)MathSciNetMATHGoogle Scholar
  28. 28.
    Lins, R.D.: A new formula for the execution of categorical combinators. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 89–98. Springer, Heidelberg (1986). doi:10.1007/3-540-16780-3_82 CrossRefGoogle Scholar
  29. 29.
    Loader, R.: Higher order \(\beta \) matching is undecidable. Logic J. Interest Group Pure Appl. Logics 11(1), 51–68 (2003)MathSciNetMATHGoogle Scholar
  30. 30.
    Mellies, P.-A.: Typed \(\lambda \)-calculi with explicit substitutions may not terminate. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–334. Springer, Heidelberg (1995). doi:10.1007/BFb0014062 CrossRefGoogle Scholar
  31. 31.
    Milner, R.: Local bigraphs and confluence: two conjectures: (extended abstract). ENTCS 175(3), 65–73 (2007)MathSciNetMATHGoogle Scholar
  32. 32.
    Padovani, V.: Decidability of fourth-order matching. Math. Struct. Comput. Sci. 10(3), 361–372 (2000)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Renaud, F.: Metaconfluence of \({\lambda }\mathtt{j}\): dealing with non-deterministic replacements (2011). http://www.pps.univ-paris-diderot.fr/~renaud/lambdaj_mconf.pdf
  34. 34.
    Snyder, W., Gallier, J.H.: Higher-order unification revisited: complete sets of transformations. J. Symb. Comput. 8(1/2), 101–140 (1989)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Stirling, C.: A game-theoretic approach to deciding higher-order matching. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 348–359. Springer, Heidelberg (2006). doi:10.1007/11787006_30 CrossRefGoogle Scholar
  36. 36.
    Tiwari, A. (ed.) 23rd International Conference on Rewriting Techniques and Applications (RTA 2012). LIPIcs, Nagoya, Japan, 28 May 2012 – 2 June 2012, vol. 15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Departamento de Ciência da ComputaçãoUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations