Spatial-Angular Sparse Coding for HARDI

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)

Abstract

High angular resolution diffusion imaging (HARDI) can produce better estimates of fiber orientation and richer sets of features for disease classification than diffusion tensor imaging. However, existing HARDI reconstruction algorithms require a large number of gradient directions, making the acquisition time too long to be clinically viable. State-of-the-art compressed sensing methods can reduce the number of measurements needed for accurate reconstruction by exploiting angular sparsity at each voxel, but the global sparsity level is therefore bounded below by the number of voxels. In this work, we aim to find a significantly sparser representation of HARDI by exploiting redundancies in both the spatial and angular domains jointly with a global HARDI basis. However, this leads to a massive global optimization problem over the whole brain which cannot be solved using existing sparse coding methods. We present a novel Kronecker extension to ADMM that exploits the separable spatial-angular structure of HARDI data to efficiently find a globally sparse reconstruction. We validate our method on phantom and real HARDI brain data by showing that we can achieve accurate reconstructions with a global sparsity level corresponding to less then one atom per voxel, surpassing the absolute limit of the state-of-the-art.

References

  1. 1.
    Auría, A., Daducci, A., Thiran, J.-P., Wiaux, Y.: Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI. NeuroImage 115, 245–255 (2015)CrossRefGoogle Scholar
  2. 2.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)CrossRefMATHGoogle Scholar
  3. 3.
    Cheng, J., Shen, D., Basser, P.J., Yap, P.-T.: Joint 6D k-q space compressed sensing for accelerated high angular resolution diffusion MRI. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 782–793. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19992-4_62 CrossRefGoogle Scholar
  4. 4.
    Feng, Y., Wu, Y., Rathi, Y., Westin, C.-F.: Sparse deconvolution of higher order tensor for fiber orientation distribution estimation. Artif. Intell. Med. 65(3), 229–238 (2015)CrossRefGoogle Scholar
  5. 5.
    Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: Estimating orientation distribution functions with probability density constraints and spatial regularity. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 877–885. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Goncalves, H.R.: Accelerated sparse coding with overcomplete dictionaries for image processing applications. Ph.D. thesis (2015)Google Scholar
  7. 7.
    Gramfort, A., Poupon, C., Descoteaux, M.: Denoising and fast diffusion imaging with physically constrained sparse dictionary learning. Med. Image Anal. 18(1), 36–49 (2014)CrossRefGoogle Scholar
  8. 8.
    Mani, M., Jacob, M., Guidon, A., Magnotta, V., Zhong, J.: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data. Magn. Reson. Med. 73(1), 126–138 (2015)CrossRefGoogle Scholar
  9. 9.
    Ning, L., et al.: Sparse reconstruction challenge for diffusion MRI: validation on a physical phantom to determine which acquisition scheme and analysis method to use? Med. Image Anal. 26(1), 316–331 (2015)CrossRefGoogle Scholar
  10. 10.
    Ning, L., Setsompop, K., Michailovich, O.V., Makris, N., Shenton, M.E., Westin, C.-F., Rathi, Y.: A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging. NeuroImage 125, 386–400 (2016)CrossRefGoogle Scholar
  11. 11.
    Sun, J., Sakhaee, E., Entezari, A., Vemuri, B.C.: Leveraging EAP-sparsity for compressed sensing of MS-HARDI in \(({\mathbf{k}},{\mathbf{q}})\)-space. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 375–386. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19992-4_29 CrossRefGoogle Scholar
  12. 12.
    Ouyang, Y., Chen, Y., Wu, Y.: Vectorial total variation regularisation of orientation distribution functions in diffusion weighted MRI. Int. J. Bioinform. Res. Appl. 10(1), 110–127 (2014)CrossRefGoogle Scholar
  13. 13.
    Ouyang, Y., Chen, Y., Wu, Y., Zhou, H.M.: Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Prob. Imaging 7(2), 565–583 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Rivenson, Y., Adrian, S.: Compressed imaging with a separable sensing operator. IEEE Signal Process. Lett. 16(6), 449–452 (2009)CrossRefGoogle Scholar
  15. 15.
    Tristán-Vega, A., Westin, C.-F.: Probabilistic ODF estimation from reduced HARDI data with sparse regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 182–190. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23629-7_23 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Center for Imaging ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations