An Artificial Agent for Anatomical Landmark Detection in Medical Images

  • Florin C. GhesuEmail author
  • Bogdan Georgescu
  • Tommaso Mansi
  • Dominik Neumann
  • Joachim Hornegger
  • Dorin Comaniciu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)


Fast and robust detection of anatomical structures or pathologies represents a fundamental task in medical image analysis. Most of the current solutions are however suboptimal and unconstrained by learning an appearance model and exhaustively scanning the space of parameters to detect a specific anatomical structure. In addition, typical feature computation or estimation of meta-parameters related to the appearance model or the search strategy, is based on local criteria or predefined approximation schemes. We propose a new learning method following a fundamentally different paradigm by simultaneously modeling both the object appearance and the parameter search strategy as a unified behavioral task for an artificial agent. The method combines the advantages of behavior learning achieved through reinforcement learning with effective hierarchical feature extraction achieved through deep learning. We show that given only a sequence of annotated images, the agent can automatically and strategically learn optimal paths that converge to the sought anatomical landmark location as opposed to exhaustively scanning the entire solution space. The method significantly outperforms state-of-the-art machine learning and deep learning approaches both in terms of accuracy and speed on 2D magnetic resonance images, 2D ultrasound and 3D CT images, achieving average detection errors of 1-2 pixels, while also recognizing the absence of an object from the image.


Deep Learning Artificial Agent Convolutional Neural Network Landmark Location Compute Tomography Dataset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives. CoRR abs/1206.5538 (2012)Google Scholar
  2. 2.
    Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement learning. In: IEEE ICCV, pp. 2488–2496 (2015)Google Scholar
  3. 3.
    Ghesu, F.C., Krubasik, E., Georgescu, B., Singh, V., Zheng, Y., Hornegger, J., Comaniciu, D.: Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE TMI 35(5), 1217–1228 (2016)Google Scholar
  4. 4.
    Lin, L.J.: Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA (1992)Google Scholar
  5. 5.
    Lu, X., Georgescu, B., Jolly, M.-P., Guehring, J., Young, A., Cowan, B., Littmann, A., Comaniciu, D.: Cardiac anchoring in MRI through context modeling. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 383–390. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Lu, X., Jolly, M.-P.: Discriminative context modeling using auxiliary markers for LV landmark detection from a single MR image. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 105–114. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)CrossRefGoogle Scholar
  8. 8.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson Education, Upper Saddle River (2003)zbMATHGoogle Scholar
  9. 9.
    Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)Google Scholar
  10. 10.
    Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)zbMATHGoogle Scholar
  11. 11.
    Zheng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D.: 3D deep learning for efficient and robust landmark detection in volumetric data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 565–572. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24553-9_69 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Florin C. Ghesu
    • 1
    • 2
    Email author
  • Bogdan Georgescu
    • 1
  • Tommaso Mansi
    • 1
  • Dominik Neumann
    • 1
  • Joachim Hornegger
    • 2
  • Dorin Comaniciu
    • 1
  1. 1.Medical Imaging TechnologiesSiemens HealthineersPrincetonUSA
  2. 2.Pattern Recognition LabFriedrich-Alexander-UniversitätErlangenGermany

Personalised recommendations