Advertisement

Enhanced Probabilistic Label Fusion by Estimating Label Confidences Through Discriminative Learning

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9901)

Abstract

Multiple-atlas segmentation has recently shown success in automatic segmentation of brain images. It consists in registering the labelmaps from a set of atlases to the anatomy of a target image, and then fusing the multiple labelmaps into a consensus segmentation on the target image. Accurately estimating the confidence of each atlas decision is key for the success of label fusion. Common approaches either rely on local patch similarity, probabilistic statistical frameworks or a combination of both. We present a probabilistic label fusion framework that takes into account label confidence at each point. Maximum likelihood atlas confidences are estimated by explicitly modelling the relationship between image appearance and segmentation errors. We also propose a novel type of label-dependent appearance features based on atlas labelmaps. Our results indicate that the proposed label fusion framework achieves state-of-the-art performance in the segmentation of subcortical structures.

Keywords

Multiatlas segmentation Confidence estimation Discriminative learning brain MRI 

Notes

Acknowledgments

This work is co-financed by the Marie Curie FP7-PEOPLE-2012-COFUND Action, Grant agreement no: 600387.

References

  1. 1.
    Artaechevarria, X., Muñoz Barrutia, A., Ortiz-de Solórzano, C.: Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans. Med. Imaging 28(8), 1266–1277 (2009)CrossRefGoogle Scholar
  2. 2.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Babalola, K.O., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W., Smith, S., Cootes, T., Jenkinson, M., Rueckert, D.: An evaluation of four automatic methods of segmenting the subcortical structures in the brain. NeuroImage 47(4), 1435–1447 (2009)CrossRefGoogle Scholar
  4. 4.
    Cardoso, J.M., Leung, K., Modat, M., Keihaninejad, S., Cash, D., Barnes, J., Fox, N.C., Ourselin, S.: Steps: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med. Image Anal. 17(6), 671–684 (2013)CrossRefGoogle Scholar
  5. 5.
    Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)CrossRefGoogle Scholar
  6. 6.
    Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)Google Scholar
  7. 7.
    Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 23(8), 983–994 (2004)Google Scholar
  8. 8.
    Sanroma, G., Benkarim, O.M., Piella, G., Wu, G., Zhu, X., Shen, D., Ballester, M.Á.G.: Discriminative dimensionality reduction for patch-based label fusion. In: Bhatia, K.K., Lombaert, H. (eds.) MLMMI 2015. LNCS, vol. 9487, pp. 94–103. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27929-9_10 CrossRefGoogle Scholar
  9. 9.
    Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2013)CrossRefGoogle Scholar
  10. 10.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Universitat Pompeu FabraBarcelonaSpain
  2. 2.ICREABarcelonaSpain

Personalised recommendations