Antibiotic Resistance due to Reduced Uptake

  • Lucía Fernández
  • Joseph B. McPhee
  • Sandeep Tamber
  • Michelle D. Brazas
  • Shawn Lewenza
  • Robert E. W. HancockEmail author


The introduction of antibiotic therapy for the treatment of bacterial infections has led to a greatly increased human life span compared to that in the pre-antibiotic era. However, a disturbing trend has also been noted in that, within a very short period of time following the introduction of a new antibiotic, resistance to that antibiotic begins to emerge, a factor that is becoming increasingly meaningful as the discovery of new antibiotics wanes [1–3]. There are a number of mechanisms by which a bacterium may become resistant to a particular antibiotic. Generally these include, but are not limited to, modification of the drug to render it inactive, modification of the drug target, such that it is incapable of interacting with the drug and decreased uptake of the antibiotic into the cell, due to reduced transport and/or increased efflux. Recent functional genomic studies have also implied that antibiotics may have more complex mechanisms of action than first thought and we are beginning to appreciate that in addition to the mutation of primary targets, subtle mutations in secondary targets are likely to be influential [4, 5]. Moreover, a growing body of evidence suggests that the temporary changes in susceptibility associated with the phenomenon of adaptive resistance may also be important for the global rise in bacterial resistance to antimicrobial compounds [6]. This chapter will focus on the contribution of a decreased antibiotic uptake to an increase in antibacterial resistance.



Financial assistance from the Canadian Cystic Fibrosis Foundation and the Canadian Institutes of Health Research is gratefully acknowledged. REWH holds a Canada Research Chair.


  1. 1.
    Spellberg B, Powers JH, Brass EP, Miller LG, Edwards Jr JE. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis. 2004;38(9):1279–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Theuretzbacher U, Toney JH. Nature’s clarion call of antibacterial resistance: are we listening? Curr Opin Investig Drugs. 2006;7(2):158–66.PubMedGoogle Scholar
  3. 3.
    Hancock REW. The end of an era? Nat Rev Drug Discov. 2006;6(28):28.Google Scholar
  4. 4.
    Brazas MD, Hancock REW. Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov Today. 2005;10(18):1245–52.PubMedCrossRefGoogle Scholar
  5. 5.
    El’garch F, Jeannot K, Hocquet D, Llanes-Barakat C, Plesiat P. Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 2007;51(3):1016–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Fernández L, Breidenstein EB, Hancock REW. Creeping baselines and adaptive resistance to antibiotics. Drug Resist Updat. 2011;14(1):1–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Hancock REW, Egli C, Karunaratne N. Molecular organization and structural role of outer membrane macromolecules. In: Ghuysen JM, Hakenbeck R, editors. Bacterial cell envelope. Amsterdam: Elsevier Science Publishers BV; 1994. p. 263–79.CrossRefGoogle Scholar
  8. 8.
    Kadner RJ. Cytoplasmic membrane. In: Neidhardt FC, editor. Escherichia coli and Salmonella. 2nd ed. Washington, DC: ASM Press; 1996. p. 58–87.Google Scholar
  9. 9.
    Cronan JE. Bacterial membrane lipids: where do we stand? Annu Rev Microbiol. 2003;57:203–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Hobot JA, Carlemalm E, Villiger W, Kellenberger E. Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol. 1984;160(1):143–52.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Leduc M, Frehel C, Siegel E, Van Heijenoort J. Multilayered distribution of peptidoglycan in the periplasmic space of Escherichia coli. J Gen Microbiol. 1989;135(Pt 5):1243–54.PubMedGoogle Scholar
  12. 12.
    Dubochet J, McDowall AW, Menge B, Schmid EN, Lickfeld KG. Electron microscopy of frozen-hydrated bacteria. J Bacteriol. 1983;155(1):381–90.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lam JS, Lam MY, MacDonald LA, Hancock RE. Visualization of Pseudomonas aeruginosa O antigens by using a protein A-dextran-colloidal gold conjugate with both immunoglobulin G and immunoglobulin M monoclonal antibodies. J Bacteriol. 1987;169(8):3531–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Oliver DB. Periplasm. In: Neidhardt FC, editor. Escherichia coli and Salmonella: cellular and molecular biology. 2nd ed. Washington, DC: ASM Press; 1996. p. 88–103.Google Scholar
  15. 15.
    Van Wielink JE, Duine JA. How big is the periplasmic space? Trends Biochem Sci. 1990;15(4):136–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J, Garland PB. Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol. 1986;165(3):787–95.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Weidel W, Pelzer H. Bagshaped macromolecules—a new outlook on bacterial cell walls. Adv Enzymol Relat Areas Mol Biol. 1964;26:193–232.Google Scholar
  18. 18.
    Takade A, Umeda A, Matsuoka M, Yoshida S, Nakamura M, Amako K. Comparative studies of the cell structures of Mycobacterium leprae and M. tuberculosis using the electron microscopy freeze-substitution technique. Microbiol Immunol. 2003;47(4):265–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Paul TR, Beveridge TJ. Reevaluation of envelope profiles and cytoplasmic ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution protocols. J Bacteriol. 1992;174(20):6508–17.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Labischinski H, Goodell EW, Goodell A, Hochberg ML. Direct proof of a “more-than-single-layered” peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J Bacteriol. 1991;173(2):751–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Yao X, Jericho M, Pink D, Beveridge T. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J Bacteriol. 1999;181(22):6865–75.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Dmitriev BA, Ehlers S, Rietschel ET. Layered murein revisited: a fundamentally new concept of bacterial cell wall structure, biogenesis and function. Med Microbiol Immunol. 1999;187(3):173–81.PubMedCrossRefGoogle Scholar
  23. 23.
    van Heijenoort J, Gutmann L. Correlation between the structure of the bacterial peptidoglycan monomer unit, the specificity of transpeptidation, and susceptibility to beta-lactams. Proc Natl Acad Sci U S A. 2000;97(10):5028–30.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Glauner B, Holtje JV, Schwarz U. The composition of the murein of Escherichia coli. J Biol Chem. 1988;263(21):10088–95.PubMedGoogle Scholar
  25. 25.
    Gmeiner J, Essig P, Martin HH. Characterization of minor fragments after digestion of Escherichia coli murein with endo- N, O-diacetylmuramidase from Chalaropsis, and determination of glycan chain length. FEBS Lett. 1982;138(1):109–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Labischinski H, Barnickel G, Naumann D, Keller P. Conformational and topological aspects of the three-dimensional architecture of bacterial peptidoglycan. Ann Inst Pasteur Microbiol. 1985;136A(1):45–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Naumann D, Barnickel G, Bradaczek H, Labischinski H, Giesbrecht P. Infrared spectroscopy, a tool for probing bacterial peptidoglycan. Potentialities of infrared spectroscopy for cell wall analytical studies and rejection of models based on crystalline chitin. Eur J Biochem. 1982;125(3):505–15.PubMedCrossRefGoogle Scholar
  28. 28.
    Raetz CR. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.PubMedCrossRefGoogle Scholar
  30. 30.
    Preston A, Mandrell RE, Gibson BW, Apicella MA. The lipooligosaccharides of pathogenic Gram-negative bacteria. Crit Rev Microbiol. 1996;22(3):139–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Hancock REW, Brinkman FS. Function of pseudomonas porins in uptake and efflux. Annu Rev Microbiol. 2002;56:17–38.PubMedCrossRefGoogle Scholar
  32. 32.
    Koronakis V. TolC—the bacterial exit duct for proteins and drugs. FEBS Lett. 2003;555(1):66–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Draper P. The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci. 1998;3:D1253–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu J, Barry III CE, Besra GS, Nikaido H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem. 1996;271(47):29545–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Faller M, Niederweis M, Schulz GE. The structure of a mycobacterial outer-membrane channel. Science. 2004;303(5661):1189–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Niederweis M. Mycobacterial porins—new channel proteins in unique outer membranes. Mol Microbiol. 2003;49(5):1167–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Jann B, Jann K. Capsules of Escherichia coli. In: Sussman M, editor. Mechanisms of virulence. Cambridge: Cambridge University Press; 1997.Google Scholar
  39. 39.
    Whitfield C, Roberts IS. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol. 1999;31(5):1307–19.PubMedCrossRefGoogle Scholar
  40. 40.
    Costerton JW, Irvin RT, Cheng KJ. The bacterial glycocalyx in nature and disease. Annu Rev Microbiol. 1981;35:299–324.PubMedCrossRefGoogle Scholar
  41. 41.
    Ophir T, Gutnick DL. A role for exopolysaccharides required in the protection of microorganisms from dessication. Appl Environ Microbiol. 1994;60:740–5.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Berry A, DeVault JD, Chakrabarty AM. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol. 1989;171(5):2312–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pickard D, Li J, Roberts M, et al. Characterization of defined ompR mutants of Salmonella typhi: ompR is involved in the regulation of Vi polysaccharide expression. Infect Immun. 1994;62(9):3984–93.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Sauer K. The genomics and proteomics of biofilm formation. Genome Biol. 2003;4(6):219.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.PubMedCrossRefGoogle Scholar
  46. 46.
    Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002;292(2):107–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Govan J. Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis. In: Griffiths E, Donachie W, Stephen J, editors. Bacterial infections of the respiratory and gastrointestinal mucosae. Oxford: IRL Press; 1988. p. 67–96.Google Scholar
  49. 49.
    Michalek MT, Mold C, Bremer EG. Inhibition of the alternative pathway of human complement by structural analogues of sialic acid. J Immunol. 1988;140(5):1588–94.PubMedGoogle Scholar
  50. 50.
    Platt MW, Correa Jr N, Mold C. Growth of group B streptococci in human serum leads to increased cell surface sialic acid and decreased activation of the alternative complement pathway. Can J Microbiol. 1994;40(2):99–105.PubMedCrossRefGoogle Scholar
  51. 51.
    Edwards MS, Kasper DL, Jennings HJ, Baker CJ, Nicholson-Weller A. Capsular sialic acid prevents activation of the alternative complement pathway by type III, group B streptococci. J Immunol. 1982;128(3):1278–83.PubMedGoogle Scholar
  52. 52.
    Marques MB, Kasper DL, Pangburn MK, Wessels MR. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect Immun. 1992;60(10):3986–93.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bortolussi R, Ferrieri P, Bjorksten B, Quie PG. Capsular K1 polysaccharide of Escherichia coli: relationship to virulence in newborn rats and resistance to phagocytosis. Infect Immun. 1979;25(1):293–8.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Nosanchuk JD, Casadevall A. Cellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding. Infect Immun. 1997;65(5):1836–41.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wibawan IW, Lammler C. Influence of capsular neuraminic acid on properties of streptococci of serological group B. J Gen Microbiol. 1991;137(Pt 12):2721–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Mandrell RE, McLaughlin R, Aba Kwaik Y, et al. Lipooligosaccharides (LOS) of some Haemophilus species mimic human glycosphingolipids, and some LOS are sialylated. Infect Immun. 1992;60(4):1322–8.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Mandrell RE, Griffiss JM, Macher BA. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J Exp Med. 1988;168(1):107–26.PubMedCrossRefGoogle Scholar
  58. 58.
    Vann WF, Schmidt MA, Jann B, Jann K. The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. A polymer similar to desulfo-heparin. Eur J Biochem. 1981;116(2):359–64.PubMedCrossRefGoogle Scholar
  59. 59.
    Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 2004;72(12):7107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Llobet E, Tomás JM, Bengoechea JA. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology. 2008;154(Pt 12):3877–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Pavkov-Keller T, Howorka S, Keller W. The structure of bacterial S-layer proteins. Prog Mol Biol Transl Sci. 2011;103:73–130.PubMedCrossRefGoogle Scholar
  62. 62.
    Fagan RP, Fairweather NF. Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol. 2014;12(3):211–22.PubMedCrossRefGoogle Scholar
  63. 63.
    Lau JH, Nomellini JF, Smit J. Analysis of high-level S-layer protein secretion in Caulobacter crescentus. Can J Microbiol. 2010;56:501–14.PubMedCrossRefGoogle Scholar
  64. 64.
    Engelhardt H. Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol. 2007;160(2):115–24.PubMedCrossRefGoogle Scholar
  65. 65.
    de la Fuente-Núñez C, Mertens J, Smit J, Hancock RE. The bacterial surface layer provides protection against antimicrobial peptides. Appl Environ Microbiol. 2012;78(15):5452–6.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tamber S, Hancock REW. On the mechanism of solute uptake in Pseudomonas. Front Biosci. 2003;8:s472–83.PubMedCrossRefGoogle Scholar
  67. 67.
    Huang H, Hancock REW. Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa. J Bacteriol. 1993;175(24):7793–800.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Vaara M. Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants. J Bacteriol. 1981;148(2):426–34.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hancock REW, Wong PG. Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother. 1984;26(1):48–52.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Stephan J, Mailaender C, Etienne G, Daffe M, Niederweis M. Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob Agents Chemother. 2004;48(11):4163–70.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Stephan J, Bender J, Wolschendorf F, et al. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol. 2005;58(3):714–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Paulsen IT. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol. 2003;6(5):446–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Piddock LJ. Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol. 2006;4(8):629–36.PubMedCrossRefGoogle Scholar
  74. 74.
    Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konno M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol. 1990;172(12):6942–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Poole K. Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol. 2001;4(5):500–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect. 2004;10(1):12–26.PubMedCrossRefGoogle Scholar
  77. 77.
    Lamarche MG, Déziel E. MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). PLoS ONE. 2011;6(9), e24310.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K. mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother. 2011;55(2):508–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Fraud S, Campigotto AJ, Chen Z, Poole K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother. 2011;55(2):508–14.CrossRefGoogle Scholar
  80. 80.
    Fraud S, Poole K. Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(3):1068–74.PubMedCrossRefGoogle Scholar
  81. 81.
    Abdelraouf K, Kabbara S, Ledesma KR, Poole K, Tam VH. Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa. J Antimicrob Chemother. 2011;66(6):1311–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Sánchez P, Linares JF, Ruiz-Díez B, Campanario E, Navas A, Baquero F, Martínez JL. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother. 2002;50(5):657–64.PubMedCrossRefGoogle Scholar
  83. 83.
    Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25(4):661–81.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ramos JL, Martinez-Bueno M, Molina-Henares AJ, et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005;69(2):326–56.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res. 2003;2(1):48–62.PubMedGoogle Scholar
  86. 86.
    Sánchez-Romero MA, Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci U S A. 2014;111(1):355–60.PubMedCrossRefGoogle Scholar
  87. 87.
    Cowan SW, Garavito RM, Jansonius JN, et al. The structure of OmpF porin in a tetragonal crystal form. Structure. 1995;3(10):1041–50.PubMedCrossRefGoogle Scholar
  88. 88.
    Cowan SW, Schirmer T, Rummel G, et al. Crystal structures explain functional properties of two Escherichia coli porins. Nature. 1992;358(6389):727–33.PubMedCrossRefGoogle Scholar
  89. 89.
    Kreusch A, Neubuser A, Schiltz E, Weckesser J, Schulz GE. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 A resolution. Protein Sci. 1994;3(1):58–63.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hernandez-Alles S, Conejo M, Pascual A, Tomas JM, Benedi VJ, Martinez-Martinez L. Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae. J Antimicrob Chemother. 2000;46(2):273–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Hernandez-Alles S, Benedi VJ, Martinez-Martinez L, et al. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob Agents Chemother. 1999;43(4):937–9.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Pragai Z, Nagy E. In-vitro selection of porin-deficient mutants of two strains of Klebsiella pneumoniae with reduced susceptibilities to meropenem, but not to imipenem. J Antimicrob Chemother. 1998;42(6):821–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Schirmer T, Keller TA, Wang YF, Rosenbusch JP. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995;267(5197):512–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Van Gelder P, Dumas F, Bartoldus I, et al. Sugar transport through maltoporin of Escherichia coli: role of the greasy slide. J Bacteriol. 2002;184(11):2994–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Moraes TF, Bains M, Hancock RE, Strynadka NC. An arginine ladder in OprP mediates phosphate-specific transfer across the outer membrane. Nat Struct Mol Biol. 2007;14(1):85–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Fsihi H, Kottwitz B, Bremer E. Single amino acid substitutions affecting the substrate specificity of the Escherichia coli K-12 nucleoside-specific Tsx channel. J Biol Chem. 1993;268(23):17495–503.PubMedGoogle Scholar
  97. 97.
    Benz R, Schmid A, Maier C, Bremer E. Characterization of the nucleoside-binding site inside the Tsx channel of Escherichia coli outer membrane. Reconstitution experiments with lipid bilayer membranes. Eur J Biochem. 1988;176(3):699–705.PubMedCrossRefGoogle Scholar
  98. 98.
    Trias J, Nikaido H. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem. 1990;265(26):15680–4.PubMedGoogle Scholar
  99. 99.
    Trias J, Nikaido H. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1990;34(1):52–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tamber S, Maier E, Benz R, Hancock REW. Characterization of OpdH, a Pseudomonas aeruginosa porin involved in the uptake of tricarboxylates. J Bacteriol. 2007;189(3):929–39.PubMedCrossRefGoogle Scholar
  101. 101.
    Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000;37(2):239–53.PubMedCrossRefGoogle Scholar
  102. 102.
    Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science. 1998;282(5397):2215–20.PubMedCrossRefGoogle Scholar
  103. 103.
    Locher KP, Rees B, Koebnik R, et al. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell. 1998;95(6):771–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Ferguson AD, Kodding J, Walker G, et al. Active transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA. Structure (Camb). 2001;9(8):707–16.CrossRefGoogle Scholar
  105. 105.
    Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, Welte W. Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci. 2000;9(5):956–63.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mailaender C, Reiling N, Engelhardt H, Bossmann S, Ehlers S, Niederweis M. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology. 2004;150(Pt 4):853–64.PubMedCrossRefGoogle Scholar
  107. 107.
    Raynaud C, Laneelle MA, Senaratne RH, Draper P, Laneelle G, Daffe M. Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology. 1999;145(Pt 6):1359–67.PubMedCrossRefGoogle Scholar
  108. 108.
    Jarlier V, Nikaido H. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol. 1990;172(3):1418–23.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Moore RA, Bates NC, Hancock REW. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother. 1986;29(3):496–500.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bina J, Alm RA, Uria-Nickelsen M, Thoimas SR, Trust TJ, Hancock REW. Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro. Antimicrob Agents Chemother. 2000;44(2):248–54.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Macfarlane EL, Kwasnicka A, Ochs MM, Hancock REW. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol. 1999;34(2):305–16.PubMedCrossRefGoogle Scholar
  112. 112.
    Peterson AA, Hancock REW, McGroarty EJ. Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J Bacteriol. 1985;164(3):1256–61.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Peterson AA, Fesik SW, McGroarty EJ. Decreased binding of antibiotics to lipopolysaccharides from polymyxin-resistant strains of Escherichia coli and Salmonella typhimurium. Antimicrob Agents Chemother. 1987;31(2):230–7.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Skurnik M, Venho R, Bengoechea JA, Moriyon I. The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Mol Microbiol. 1999;31(5):1443–62.PubMedCrossRefGoogle Scholar
  115. 115.
    Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Gilleland Jr HE, Murray RG. Ultrastructural study of polymyxin-resistant isolates of Pseudomonas aeruginosa. J Bacteriol. 1976;125(1):267–81.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Lounatmaa K, Nanninga N. Effect of polymyxin on the outer membrane of Salmonella typhimurium: freeze-fracture studies. J Bacteriol. 1976;128(2):665–7.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Kato A, Latifi T, Groisman EA. Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Proc Natl Acad Sci U S A. 2003;100(8):4706–11.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Garcia Vescovi E, Soncini FC, Groisman EA. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell. 1996;84(1):165–74.PubMedCrossRefGoogle Scholar
  120. 120.
    Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. A signal transduction system that responds to extracellular iron. Cell. 2000;103(1):113–25.PubMedCrossRefGoogle Scholar
  121. 121.
    Bader MW, Sanowar S, Daley ME, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005;122(3):461–72.PubMedCrossRefGoogle Scholar
  122. 122.
    Nummila K, Kilpelainen I, Zahringer U, Vaara M, Helander IM. Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol. 1995;16(2):271–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Guo L, Lim KB, Poduje CM, et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell. 1998;95(2):189–98.PubMedCrossRefGoogle Scholar
  124. 124.
    Guina T, Yi EC, Wang H, Hackett M, Miller SI. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol. 2000;182(14):4077–86.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    McPhee JB, Lewenza S, Hancock REW. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol. 2003;50(1):205–17.PubMedCrossRefGoogle Scholar
  126. 126.
    Fernández L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock REW. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother. 2010;54(8):3372–82.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Fernández L, Jenssen H, Bains M, Wiegand I, Gooderham WJ, Hancock REW. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother. 2012;56(12):6212–22.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Muller C, Plésiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(3):1211–21.PubMedCrossRefGoogle Scholar
  129. 129.
    Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia. Mol Microbiol. 2012;85(5):962–74.PubMedCrossRefGoogle Scholar
  130. 130.
    Ortega XP, Cardona ST, Brown AR, Loutet SA, Flannagan RS, Campopiano DJ, et al. A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability. J Bacteriol. 2007;189:3639–44.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 2006;4(7):529–36.PubMedCrossRefGoogle Scholar
  132. 132.
    Vaara M, Nurminen M. Outer membrane permeability barrier in Escherichia coli mutants that are defective in the late acyltransferases of lipid A biosynthesis. Antimicrob Agents Chemother. 1999;43(6):1459–62.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Snyder DS, McIntosh TJ. The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry. 2000;39(38):11777–87.PubMedCrossRefGoogle Scholar
  134. 134.
    Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. Symp Ser Soc Appl Microbiol. 2002;31:46S–54.CrossRefGoogle Scholar
  135. 135.
    Chopra I, Ball P. Transport of antibiotics into bacteria. Adv Microb Physiol. 1982;23:183–240.PubMedCrossRefGoogle Scholar
  136. 136.
    Hancock RE. Aminoglycoside uptake and mode of action-with special reference to streptomycin and gentamicin. II. Effects of aminoglycosides on cells. J Antimicrob Chemother. 1981;8(6):429–45.PubMedCrossRefGoogle Scholar
  137. 137.
    Bryan LE, Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother. 1983;23(6):835–45.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Westbrock-Wadman S, Sherman DR, Hickey MJ, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother. 1999;43(12):2975–83.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Vaara M, Vaara T. Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature. 1983;303(5917):526–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents; 2007.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lucía Fernández
    • 1
  • Joseph B. McPhee
    • 2
  • Sandeep Tamber
    • 3
  • Michelle D. Brazas
    • 4
  • Shawn Lewenza
    • 5
  • Robert E. W. Hancock
    • 6
    • 7
    Email author
  1. 1.Instituto de Productos Lacteos de Asturias (IPLA)Consejo Superior de Investigaciones Cientificas (CSIC)VillaviciosaSpain
  2. 2.Department of Chemistry and BiologyRyerson UniversityTorontoCanada
  3. 3.Bureau of Microbial HazardsHealth CanadaOttawaCanada
  4. 4.Ontario Institute for Cancer Research, MaRS CentreTorontoCanada
  5. 5.Faculty of Science and TechnologyAthabasca UniversityAthabascaCanada
  6. 6.Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada
  7. 7.Centre for Microbial Diseases and Immunity ResearchUniversity of British ColumbiaVancouverCanada

Personalised recommendations