Skip to main content

Biochemical Logic of Antibiotic Inactivation and Modification

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Bacteria have evolved a myriad of tactics to circumvent the actions of antibiotics. Bacterial resistance to antibiotics manifests itself in both general and specific protection mechanisms. Consequently, the characteristics of resistance can be paralleled to those of the mammalian immune response. Antibiotic resistance can be differentiated into: (1) nonspecific mechanisms that confer general innate immunity to a class of antibiotics (e.g., broad spectrum efflux mechanisms, target modification) and (2) highly precise responses that include selective enzyme-based mechanisms that mirror the acquired immune response with respect to target specificity and potency. Bacteria deploy both types of mechanisms in response to the presence of cytotoxic antibiotics. One of the most prevalent mechanisms of resistance involves enzymatically altering the antibiotic structure to an inactive derivative, one incapable of acting against its bacterial target. Antibiotic-inactivating enzymes can accomplish this task by one of two means: by eradicating the essential reactive center of the antibiotic or by modifying the drug in a manner that impairs target binding. By critically assessing the manner in which each antibiotic class interacts with its target and the subsequent mode of inactivation, the molecular logic of each strategy can be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;146:837.

    Article  CAS  Google Scholar 

  2. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Hye Park C, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12:83–8.

    Article  CAS  PubMed  Google Scholar 

  3. Walsh CT. Antibiotics action, origins resistance. Washington, DC: ASM Press; 2003.

    Google Scholar 

  4. Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev. 2005;105:395–424.

    Article  CAS  PubMed  Google Scholar 

  5. Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc Natl Acad Sci U S A. 1965;54:1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8:557–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Zhou Z, Jiang Y, Yu Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother. 2011;66:1255–9.

    Article  CAS  PubMed  Google Scholar 

  10. Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J, Topisirovic L, Kojic M. Emergence of NDM-1 metallo-beta-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother. 2011;55:3929–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darley E, Weeks J, Jones L, Daniels V, Wootton M, MacGowan A, Walsh T. NDM-1 polymicrobial infections including Vibrio cholerae. Lancet. 2012;380:1358.

    Article  PubMed  Google Scholar 

  12. Decousser JW, Jansen C, Nordmann P, Emirian A, Bonnin RA, Anais L, Merle JC, Poirel L. Outbreak of NDM-1-producing Acinetobacter baumannii in France, January to May 2013. Euro Surveill. 2013;18(31):20574.

    Article  Google Scholar 

  13. Janvier F, Jeannot K, Tesse S, Robert-Nicoud M, Delacour H, Rapp C, Merens A. Molecular characterization of blaNDM-1 in a sequence type 235 Pseudomonas aeruginosa isolate from France. Antimicrob Agents Chemother. 2013;57:3408–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN. Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc. 2003;125:15730–1.

    Article  CAS  PubMed  Google Scholar 

  15. Bernat BA, Laughlin LT, Armstrong RN. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry. 1997;36:3050–5.

    Article  CAS  PubMed  Google Scholar 

  16. Cao M, Bernat BA, Wang Z, Armstrong RN, Helmann JD. FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol. 2001;183:2380–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Teran FJ, Suarez JE, Hardisson C, Mendoza MC. Molecular epidemiology of plasmid mediated resistance to fosfomycin among bacteria isolated from different environments. FEMS Microbiol Lett. 1988;55:213.

    Article  CAS  Google Scholar 

  18. Etienne J, Gerbaud G, Courvalin P, Fleurette J. Plasmid-mediated resistance to fosfomycin in Staphylococcus epidermidis. FEMS Microbiol Lett. 1989;52:133–7.

    Article  CAS  PubMed  Google Scholar 

  19. Rife CL, Pharris RE, Newcomer ME, Armstrong RN. Crystal structure of a genomically encoded fosfomycin resistance protein (FosA) at 1.19 A resolution by MAD phasing off the L-III edge of Tl(+). J Am Chem Soc. 2002;124:11001–3.

    Article  CAS  PubMed  Google Scholar 

  20. Katz L, McDaniel R. Novel macrolides through genetic engineering. Med Res Rev. 1999;19:543–58.

    Article  CAS  PubMed  Google Scholar 

  21. Schlunzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature. 2001;413:814–21.

    Article  CAS  PubMed  Google Scholar 

  22. Morar M, Pengelly K, Koteva K, Wright GD. Mechanism and diversity of the erythromycin esterase family of enzymes. Biochemistry. 2012;51:1740–51.

    Article  CAS  PubMed  Google Scholar 

  23. Arthur M, Autissier D, Courvalin P. Analysis of the nucleotide sequence of the ereB gene encoding the erythromycin esterase type II. Nucleic Acids Res. 1986;14:4987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Biskri L, Mazel D. Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron. Antimicrob Agents Chemother. 2003;47:3326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ounissi H, Courvalin P. Nucleotide sequence of the gene ereA encoding the erythromycin esterase in Escherichia coli. Gene. 1985;35:271–8.

    Article  CAS  PubMed  Google Scholar 

  26. Plante I, Centron D, Roy PH. An integron cassette encoding erythromycin esterase, ere(A), from Providencia stuartii. J Antimicrob Chemother. 2003;51:787–90.

    Article  CAS  PubMed  Google Scholar 

  27. Arthur M, Andremont A, Courvalin P. Distribution of erythromycin esterase and rRNA methylase genes in members of the family Enterobacteriaceae highly resistant to erythromycin. Antimicrob Agents Chemother. 1987;31:404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakamura A, Nakazawa K, Miyakozawa I, Mizukoshi S, Tsurubuchi K, Nakagawa M, O'Hara K, Sawai T. Macrolide esterase-producing Escherichia coli clinically isolated in Japan. J Antibiot (Tokyo). 2000;53:516–24.

    Article  CAS  Google Scholar 

  29. Murphy BP, O'Mahony R, Buckley JF, Shine P, Boyd EF, Gilroy D, Fanning S. Investigation of a global collection of nontyphoidal Salmonella of various serotypes cultured between 1953 and 2004 for the presence of class 1 integrons. FEMS Microbiol Lett. 2007;266:170–6.

    Article  CAS  PubMed  Google Scholar 

  30. Thungapathra M, Sinha KK, Chaudhuri SR, Garg P, Ramamurthy T, Nair GB, Ghosh A. Occurrence of antibiotic resistance gene cassettes aac(6′)-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob Agents Chemother. 2002;46:2948–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mukhtar TA, Wright GD. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev. 2005;105:529–42.

    Article  CAS  PubMed  Google Scholar 

  32. Harms JM, Schlunzen F, Fucini P, Bartels H, Yonath A. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2004;2:4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tu D, Blaha G, Moore PB, Steitz TA. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell. 2005;121:257–70.

    Article  CAS  PubMed  Google Scholar 

  34. Allignet J, Loncle V, Mazodier P, el Solh N. Nucleotide sequence of a staphylococcal plasmid gene, vgb, encoding a hydrolase inactivating the B components of virginiamycin-like antibiotics. Plasmid. 1988;20:271–5.

    Article  CAS  PubMed  Google Scholar 

  35. Mukhtar TA, Koteva KP, Hughes DW, Wright GD. Vgb from Staphylococcus aureus inactivates streptogramin B antibiotics by an elimination mechanism not hydrolysis. Biochemistry. 2001;40:8877–86.

    Article  CAS  PubMed  Google Scholar 

  36. Chopra I, Hawkey PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother. 1992;29:245–77.

    Article  CAS  PubMed  Google Scholar 

  37. Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005;56:20–51.

    Article  CAS  PubMed  Google Scholar 

  38. Speer BS, Salyers AA. Characterization of a novel tetracyline resistance that functions only in aerobically grown Escherichia coli. J Bacteriol. 1988;170:1423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem. 2004;279:52346–52.

    Article  CAS  PubMed  Google Scholar 

  40. Volkers G, Palm GJ, Weiss MS, Wright GD, Hinrichs W. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett. 2011;585:1061–6.

    Article  CAS  PubMed  Google Scholar 

  41. Moore IF, Hughes DW, Wright GD. Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry. 2005;44:11829–35.

    Article  CAS  PubMed  Google Scholar 

  42. Davies J, Davis BD. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem. 1968;243:3312–6.

    CAS  PubMed  Google Scholar 

  43. Edelmann P, Gallant J. Mistranslation in E coli. Cell. 1977;10:131–7.

    Article  CAS  PubMed  Google Scholar 

  44. Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987;327:389–94.

    Article  CAS  PubMed  Google Scholar 

  45. Woodcock J, Moazed D, Cannon M, Davies J, Noller HF. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. Embo J. 1991;10:3099–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brodersen DE, Clemons Jr WM, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 2000;103:1143–54.

    Article  CAS  PubMed  Google Scholar 

  47. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000;407:340–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ogle JM, Brodersen DE, Clemons Jr WM, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;292:897–902.

    Article  CAS  PubMed  Google Scholar 

  49. Vicens Q, Westhof E. Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem Biol. 2002;9:747–55.

    Article  CAS  PubMed  Google Scholar 

  50. Vicens Q, Westhof E. Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J Mol Biol. 2003;326:1175–88.

    Article  CAS  PubMed  Google Scholar 

  51. Wright GD. Aminoglycoside-modifying enzymes. Curr Opin Microbiol. 1999;2:499–503.

    Article  CAS  PubMed  Google Scholar 

  52. Magnet S, Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev. 2005;105:477–98.

    Article  CAS  PubMed  Google Scholar 

  53. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57:138–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wright GD, Berghuis AM, Mobashery S. Aminoglycoside antibiotics. Structures, functions, and resistance. Adv Exp Med Biol. 1998;456:27–69.

    Article  CAS  PubMed  Google Scholar 

  55. Daigle DM, Hughes DW, Wright GD. Prodigious substrate specificity of AAC(6′)-APH(2″), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci. Chem Biol. 1999;6:99–110.

    Article  CAS  PubMed  Google Scholar 

  56. Hegde SS, Javid-Majd F, Blanchard JS. Overexpression and mechanistic analysis of chromosomally encoded aminoglycoside 2'-N-acetyltransferase (AAC(2')-Ic) from Mycobacterium tuberculosis. J Biol Chem. 2001;276:45876–81.

    Article  CAS  PubMed  Google Scholar 

  57. Vetting MW, de Carvalho LPS, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys. 2005;433:212–26.

    Article  CAS  PubMed  Google Scholar 

  58. Wybenga-Groot LE, Draker K, Wright GD, Berghuis AM. Crystal structure of an aminoglycoside 6'-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Struct Fold Des. 1999;7:497–507.

    Article  CAS  Google Scholar 

  59. Vetting MW, Hegde SS, Javid-Majd F, Blanchard JS, Roderick SL. Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat Struct Biol. 2002;9:653–8.

    Article  CAS  PubMed  Google Scholar 

  60. Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem Biol. 2004;11:565–73.

    Article  CAS  PubMed  Google Scholar 

  61. Wolf E, Vassilev A, Makino Y, Sali A, Nakatani Y, Burley SK. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell. 1998;94:439–49.

    Article  CAS  PubMed  Google Scholar 

  62. Maurice F, Broutin I, Podglajen I, Benas P, Collatz E, Dardel F. Enzyme structural plasticity and the emergence of broad-spectrum antibiotic resistance. EMBO Rep. 2008;9:344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vetting MW, Park CH, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6')-Ib and its bifunctional, fluoroquinolone-active AAC(6')-Ib-cr variant. Biochemistry. 2008;47:9825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wright GD, Thompson PR. Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front Biosci. 1999;4:D9–21.

    CAS  PubMed  Google Scholar 

  65. Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DS, Wright GD, Berghuis AM. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell. 1997;89:887–95.

    Article  CAS  PubMed  Google Scholar 

  66. Shakya T, Stogios PJ, Waglechner N, Evdokimova E, Ejim L, Blanchard JE, McArthur AG, Savchenko A, Wright GD. A small molecule discrimination map of the antibiotic resistance kinome. Chem Biol. 2011;18:1591–601.

    Article  CAS  PubMed  Google Scholar 

  67. Stogios PJ, Spanogiannopoulos P, Evdokimova E, Egorova O, Shakya T, Todorovic N, Capretta A, Wright GD, Savchenko A. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Biochem J. 2013;454:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Llano-Sotelo B, Azucena Jr EF, Kotra LP, Mobashery S, Chow CS. Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem Biol. 2002;9:455–63.

    Article  CAS  PubMed  Google Scholar 

  69. Pedersen LC, Benning MM, Holden HM. Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase. Biochemistry. 1995;34:13305–11.

    Article  CAS  PubMed  Google Scholar 

  70. Sakon J, Liao HH, Kanikula AM, Benning MM, Rayment I, Holden HM. Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-A resolution. Biochemistry. 1993;32:11977–84.

    Article  CAS  PubMed  Google Scholar 

  71. Holm L, Sander C. DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci. 1995;20:345–7.

    Article  CAS  PubMed  Google Scholar 

  72. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell. 2002;10:117–28.

    Article  CAS  PubMed  Google Scholar 

  73. Matsuoka M, Endou K, Kobayashi H, Inoue M, Nakajima Y. A plasmid that encodes three genes for resistance to macrolide antibiotics in Staphylococcus aureus. FEMS Microbiol Lett. 1998;167:221–7.

    Article  CAS  PubMed  Google Scholar 

  74. Noguchi N, Katayama J, O'Hara K. Cloning and nucleotide sequence of the mphB gene for macrolide 2'-phosphotransferase II in Escherichia coli. FEMS Microbiol Lett. 1996;144:197–202.

    CAS  PubMed  Google Scholar 

  75. O'Hara K, Kanda T, Ohmiya K, Ebisu T, Kono M. Purification and characterization of macrolide 2'-phosphotransferase from a strain of Escherichia coli that is highly resistant to erythromycin. Antimicrob Agents Chemother. 1989;33:1354–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kadlec K, Brenner Michael G, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Watts JL, Schwarz S. Molecular basis of macrolide, triamilide, and lincosamide resistance in Pasteurella multocida from bovine respiratory disease. Antimicrob Agents Chemother. 2011;55:2475–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE. 2012;7, e34953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen P, Wei Z, Jiang Y, Du X, Ji S, Yu Y, Li L. Novel genetic environment of the carbapenem-hydrolyzing beta-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother. 2009;53:4333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Poirel L, Mansour W, Bouallegue O, Nordmann P. Carbapenem-resistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob Agents Chemother. 2008;52:1613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Noguchi N, Emura A, Matsuyama H, O'Hara K, Sasatsu M, Kono M. Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2'-phosphotransferase I in Escherichia coli. Antimicrob Agents Chemother. 1995;39:2359–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jenkins G, Cundliffe E. Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene. 1991;108:55–62.

    Article  CAS  PubMed  Google Scholar 

  82. Cundliffe E. Glycosylation of macrolide antibiotics in extracts of Streptomyces lividans. Antimicrob Agents Chemother. 1992;36:348–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Quiros LM, Aguirrezabalaga I, Olano C, Mendez C, Salas JA. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol. 1998;28:1177–85.

    Article  CAS  PubMed  Google Scholar 

  84. Gourmelen A, Blondelet-Rouault MH, Pernodet JL. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens. Antimicrob Agents Chemother. 1998;42:2612–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang M, Proctor MR, Bolam DN, Errey JC, Field RA, Gilbert HJ, Davis BG. Probing the breadth of macrolide glycosyltransferases: in vitro remodeling of a polyketide antibiotic creates active bacterial uptake and enhances potency. J Am Chem Soc. 2005;127:9336–7.

    Article  CAS  PubMed  Google Scholar 

  86. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 2001;104:901–12.

    Article  CAS  PubMed  Google Scholar 

  87. Quan S, Venter H, Dabbs ER. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother. 1997;41:2456–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Houang ET, Chu YW, Lo WS, Chu KY, Cheng AF. Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-beta-lactamase (blaIMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997 to 2000. Antimicrob Agents Chemother. 2003;47:1382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tribuddharat C, Fennewald M. Integron-mediated rifampin resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43:960–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Naas T, Mikami Y, Imai T, Poirel L, Nordmann P. Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. J Bacteriol. 2001;183:235–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Arlet G, Nadjar D, Herrmann JL, Donay JL, Lagrange PH, Philippon A. Plasmid-mediated rifampin resistance encoded by an arr-2-like gene cassette in Klebsiella pneumoniae producing an ACC-1 class C beta-lactamase. Antimicrob Agents Chemother. 2001;45:2971–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E, Zhang K, Junop M, Wright GD. Rifamycin antibiotic resistance by ADP-ribosylation: Structure and diversity of Arr. Proc Natl Acad Sci U S A. 2008;105:4886–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Morisaki N, Hashimoto Y, Furihata K, Imai T, Watanabe K, Mikami Y, Yazawa K, Ando A, Nagata Y, Dabbs ER. Structures of ADP-ribosylated rifampicin and its metabolite: intermediates of rifampicin-ribosylation by Mycobacterium smegmatis DSM43756. J Antibiot (Tokyo). 2000;53:269–75.

    Article  CAS  Google Scholar 

  94. Morisaki N, Kobayashi H, Iwasaki S, Furihata K, Dabbs ER, Yazawa K, Mikami Y. Structure determination of ribosylated rifampicin and its derivative: new inactivated metabolites of rifampicin by mycobacterial strains. J Antibiot (Tokyo). 1995;48:1299–303.

    Article  CAS  Google Scholar 

  95. Morisaki N, Iwasaki S, Yazawa K, Mikami Y, Maeda A. Inactivated products of rifampicin by pathogenic Nocardia spp. structures of glycosylated and phosphorylated metabolites of rifampicin and 3-formylrifamycin SV. J Antibiot (Tokyo). 1993;46:1605–10.

    Google Scholar 

  96. Yazawa K, Mikami Y, Maeda A, Morisaki N, Iwasaki S. Phosphorylative inactivation of rifampicin by Nocardia otitidiscaviarum. J Antimicrob Chemother. 1994;33:1127–35.

    Article  CAS  PubMed  Google Scholar 

  97. Tanaka Y, Yazawa K, Dabbs ER, Nishikawa K, Komaki H, Mikami Y, Miyaji M, Morisaki N, Iwasaki S. Different rifampicin inactivation mechanisms in Nocardia and related taxa. Microbiol Immunol. 1996;40:1–4.

    Article  CAS  PubMed  Google Scholar 

  98. Dabbs ER, Yazawa K, Mikami Y, Miyaji M, Morisaki N, Iwasaki S, Furihata K. Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob Agents Chemother. 1995;39:1007–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Spanogiannopoulos P, Waglechner N, Koteva K, Wright GD. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc Natl Acad Sci U S A. 2014;111:7102–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yazawa K, Mikami Y, Maeda A, Akao M, Morisaki N, Iwasaki S. Inactivation of rifampin by Nocardia brasiliensis. Antimicrob Agents Chemother. 1993;37:1313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Spanogiannopoulos P, Thaker M, Koteva K, Waglechner N, Wright GD. Characterization of a rifampin-inactivating glycosyltransferase from a screen of environmental actinomycetes. Antimicrob Agents Chemother. 2012;56:5061–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Piepersberg W. Molecular biology. Biochemistry, and fermentation of aminoglycoside antibiotics. In: Strohl W, editor. Biotechnology of industrial antibiotics. 2nd ed. New York: Marcel Dekker; 1997. p. 81–163.

    Google Scholar 

  103. Skarzynski T, Mistry A, Wonacott A, Hutchinson SE, Kelly VA, Duncan K. Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure. 1996;4:1465–74.

    Article  CAS  PubMed  Google Scholar 

  104. Hobbie SN, Pfister P, Brull C, Westhof E, Bottger EC. Analysis of the contribution of individual substituents in 4,6-aminoglycoside-ribosome interaction. Antimicrob Agents Chemother. 2005;49:5112–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard D. Wright Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

D’Costa, V.M., Wright, G.D. (2017). Biochemical Logic of Antibiotic Inactivation and Modification. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_8

Download citation

Publish with us

Policies and ethics