WHO. World Malaria Report 2014. World Health Organisation; 2014.
Google Scholar
Snow RW, Trape JF, Marsh K. The past, present and future of childhood malaria mortality in Africa. Trends Parasitol. 2001;17(12):593–7.
CAS
PubMed
CrossRef
Google Scholar
Wongsrichanalai C, et al. Epidemiology of drug-resistant malaria. Lancet Infect Dis. 2002;2(4):209–18.
CAS
PubMed
CrossRef
Google Scholar
Wootton JC, et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature. 2002;418(6895):320–3.
CAS
PubMed
CrossRef
Google Scholar
Chen N, et al. pfcrt Allelic types with two novel amino acid mutations in chloroquine-resistant Plasmodium falciparum isolates from the Philippines. Antimicrob Agents Chemother. 2003;47(11):3500–5.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
White NJ. Antimalarial drug resistance: the pace quickens. J Antimicrob Chemother. 1992;30(5):571–85.
CAS
PubMed
CrossRef
Google Scholar
Sibley CH, et al. Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol. 2001;17(12):582–8.
CAS
PubMed
CrossRef
Google Scholar
Glew RH, et al. Multidrug-resistant strain of Plasmodium falciparum from eastern Colombia. J Infect Dis. 1974;129(4):385–90.
CAS
PubMed
CrossRef
Google Scholar
Hall AP, et al. Amodiaquine resistant falciparum malaria in Thailand. Am J Trop Med Hyg. 1975;24(4):575–80.
CAS
PubMed
CrossRef
Google Scholar
Campbell CC, et al. Evaluation of amodiaquine treatment of chloroquine-resistant Plasmodium falciparum malaria on Zanzibar, 1982. Am J Trop Med Hyg. 1983;32(6):1216–20.
CAS
PubMed
CrossRef
Google Scholar
Childs GE, et al. A comparison of the in vitro activities of amodiaquine and desethylamodiaquine against isolates of Plasmodium falciparum. Am J Trop Med Hyg. 1989;40(1):7–11.
CAS
PubMed
CrossRef
Google Scholar
WHO. Global report on antimalarial drug efficacy and drug resistance: 2000–2010. 2010.
Google Scholar
Sa JM, et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci U S A. 2009;106(45):18883–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fontanet AL, et al. High prevalence of mefloquine-resistant falciparum malaria in eastern Thailand. Bull World Health Organ. 1993;71(3–4):377–83.
CAS
PubMed
PubMed Central
Google Scholar
Noedl H, et al. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359(24):2619–20.
CAS
PubMed
CrossRef
Google Scholar
Dondorp AM, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361(5):455–67.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
WHO. Status report on artemisinin resistance. 2014.
Google Scholar
Perrin D. Dissociation constants of organic bases in aqueous solution. London: Butterworth; 1965.
Google Scholar
Yayon A, Cabantchik ZI, Ginsburg H. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc Natl Acad Sci U S A. 1985;82(9):2784–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Krogstad DJ, Schlesinger PH, Gluzman IY. Antimalarials increase vesicle pH in Plasmodium falciparum. J Cell Biol. 1985;101(6):2302–9.
CAS
PubMed
CrossRef
Google Scholar
Bennett TN, et al. Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Mol Biochem Parasitol. 2004;133(1):99–114.
CAS
PubMed
CrossRef
Google Scholar
Yayon A, Cabantchik ZI, Ginsburg H. Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J. 1984;3(11):2695–700.
CAS
PubMed
PubMed Central
Google Scholar
Fitch CD, Kanjananggulpan P. The state of ferriprotoporphyrin IX in malaria pigment. J Biol Chem. 1987;262(32):15552–5.
CAS
PubMed
Google Scholar
Egan TJ, et al. Fate of haem iron in the malaria parasite Plasmodium falciparum. Biochem J. 2002;365(Pt 2):343–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Slater AF, Cerami A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites [see comments]. Nature. 1992;355(6356):167–9.
CAS
PubMed
CrossRef
Google Scholar
Sullivan Jr DJ, et al. On the molecular mechanism of chloroquine’s antimalarial action. Proc Natl Acad Sci U S A. 1996;93(21):11865–70.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bray PG, et al. Access to hematin: the basis of chloroquine resistance. Mol Pharmacol. 1998;54(1):170–9.
CAS
PubMed
Google Scholar
Bray PG, et al. Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum. J Cell Biol. 1999;145(2):363–76.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Macomber PB, O’Brien RL, Hahn FE. Chloroquine: physiological basis of drug resistance in Plasmodium berghei. Science. 1966;152(727):1374–5.
CAS
PubMed
CrossRef
Google Scholar
Fitch CD. Plasmodium falciparum in owl monkeys: drug resistance and chloroquine binding capacity. Science. 1970;169(942):289–90.
CAS
PubMed
CrossRef
Google Scholar
Diribe CO, Warhurst DC. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues. Biochem Pharmacol. 1985;34(17):3019–27.
CAS
PubMed
CrossRef
Google Scholar
Verdier F, et al. Chloroquine uptake by Plasmodium falciparum-infected human erythrocytes during in vitro culture and its relationship to chloroquine resistance. Antimicrob Agents Chemother. 1985;27(4):561–4.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Geary TG, Jensen JB, Ginsburg H. Uptake of [3H]chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum. Biochem Pharmacol. 1986;35(21):3805–12.
CAS
PubMed
CrossRef
Google Scholar
Gluzman IY, Schlesinger PH, Krogstad DJ. Inoculum effect with chloroquine and Plasmodium falciparum. Antimicrob Agents Chemother. 1987;31(1):32–6.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kirk K, Saliba KJ. Chloroquine resistance and the pH of the malaria parasite’s digestive vacuole. Drug Resist Updat. 2001;4(6):335–7.
CAS
PubMed
CrossRef
Google Scholar
Spiller DG, et al. The pH of the Plasmodium falciparum digestive vacuole: holy grail or dead-end trail? Trends Parasitol. 2002;18(10):441–4.
CAS
PubMed
CrossRef
Google Scholar
Bray PG, et al. Distribution of acridine orange fluorescence in Plasmodium falciparum-infected erythrocytes and its implications for the evaluation of digestive vacuole pH. Mol Biochem Parasitol. 2002;119(2):301–4. discussion 307–9, 311–3.
CAS
PubMed
CrossRef
Google Scholar
Ursos LM, Dzekunov SM, Roepe PD. The effects of chloroquine and verapamil on digestive vacuolar pH of P. falciparum either sensitive or resistant to chloroquine. Mol Biochem Parasitol. 2000;110(1):125–34.
CAS
PubMed
CrossRef
Google Scholar
Dzekunov SM, Ursos LM, Roepe PD. Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine. Mol Biochem Parasitol. 2000;110(1):107–24.
CAS
PubMed
CrossRef
Google Scholar
Wissing F, et al. Illumination of the malaria parasite Plasmodium falciparum alters intracellular pH. Implications for live cell imaging. J Biol Chem. 2002;277(40):37747–55.
CAS
PubMed
CrossRef
Google Scholar
Ursos LM, Roepe PD. Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med Res Rev. 2002;22(5):465–91.
CAS
PubMed
CrossRef
Google Scholar
Zhang J, Krugliak M, Ginsburg H. The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol. 1999;99(1):129–41.
CAS
PubMed
CrossRef
Google Scholar
Sanchez CP, Stein W, Lanzer M. Trans stimulation provides evidence for a drug efflux carrier as the mechanism of chloroquine resistance in Plasmodium falciparum. Biochemistry. 2003;42(31):9383–94.
CAS
PubMed
CrossRef
Google Scholar
Johnson DJ, et al. Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents. Mol Cell. 2004;15(6):867–77.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sanchez CP, Wunsch S, Lanzer M. Identification of a chloroquine importer in Plasmodium falciparum. Differences in import kinetics are genetically linked with the chloroquine-resistant phenotype. J Biol Chem. 1997;272(5):2652–8.
CAS
PubMed
CrossRef
Google Scholar
Wellems TE, et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross [see comments]. Nature. 1990;345(6272):253–5.
CAS
PubMed
CrossRef
Google Scholar
Wellems TE, Walker-Jonah A, Panton LJ. Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. Proc Natl Acad Sci U S A. 1991;88(8):3382–6.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Walker-Jonah A, et al. An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. Mol Biochem Parasitol. 1992;51(2):313–20.
CAS
PubMed
CrossRef
Google Scholar
Su X, et al. A genetic map and recombination parameters of the human malaria parasite plasmodium falciparum [In Process Citation]. Science. 1999;286(5443):1351–3.
CAS
PubMed
CrossRef
Google Scholar
Su X, et al. Complex polymorphisms in an approximately kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell. 1997;91(5):593–603.
CAS
PubMed
CrossRef
Google Scholar
Fidock DA, et al. Allelic modifications of the cg2 and cg1 genes do not alter the chloroquine response of drug-resistant Plasmodium falciparum. Mol Biochem Parasitol. 2000;110(1):1–10.
CAS
PubMed
CrossRef
Google Scholar
Fidock DA, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell. 2000;6(4):861–71.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Basco LK, Ringwald P. Analysis of the key pfcrt point mutation and in vitro and in vivo response to chloroquine in Yaounde, Cameroon. J Infect Dis. 2001;183(12):1828–31.
CAS
PubMed
CrossRef
Google Scholar
Chen N, et al. Sequence polymorphisms in pfcrt are strongly associated with chloroquine resistance in Plasmodium falciparum. J Infect Dis. 2001;183(10):1543–5.
CAS
PubMed
CrossRef
Google Scholar
Mehlotra RK, et al. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proc Natl Acad Sci U S A. 2001;98(22):12689–94.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sidhu AB, Verdier-Pinard D, Fidock DA. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science. 2002;298(5591):210–3.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kuhn Y, et al. Trafficking of the phosphoprotein PfCRT to the digestive vacuolar membrane in Plasmodium falciparum. Traffic. 2010;11(2):236–49.
CAS
PubMed
CrossRef
Google Scholar
Ecker A, et al. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28(11):504–14.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nomura T, et al. Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis. 2001;183(11):1653–61.
CAS
PubMed
CrossRef
Google Scholar
Picot S, et al. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J. 2009;8:89.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Ferdig MT, et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol. 2004;52(4):985–97.
CAS
PubMed
CrossRef
Google Scholar
Kublin JG, et al. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis. 2003;187(12):1870–5.
PubMed
CrossRef
Google Scholar
Wang X, et al. Decreased prevalence of the Plasmodium falciparum chloroquine resistance transporter 76T marker associated with cessation of chloroquine use against P. falciparum malaria in Hainan, People’s Republic of China. Am J Trop Med Hyg. 2005;72(4):410–4.
CAS
PubMed
Google Scholar
Mwai L, et al. Chloroquine resistance before and after its withdrawal in Kenya. Malar J. 2009;8:106.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Zhang H, Howard EM, Roepe PD. Analysis of the antimalarial drug resistance protein Pfcrt expressed in yeast. J Biol Chem. 2002;277(51):49767–75.
CAS
PubMed
CrossRef
Google Scholar
Warhurst DC, Craig JC, Adagu IS. Lysosomes and drug resistance in malaria. Lancet. 2002;360(9345):1527–9.
PubMed
CrossRef
Google Scholar
Krogstad DJ, et al. Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science. 1987;238(4831):1283–5.
CAS
PubMed
CrossRef
Google Scholar
Krogstad DJ, et al. Energy dependence of chloroquine accumulation and chloroquine efflux in Plasmodium falciparum. Biochem Pharmacol. 1992;43(1):57–62.
CAS
PubMed
CrossRef
Google Scholar
Ward S. Drug resistance mechanisms in malaria. Pharmacologist. 2002;44:A76.
Google Scholar
Bray PG, et al. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol. 2005;56(2):323–33.
CAS
PubMed
CrossRef
Google Scholar
Nessler S, et al. Evidence for activation of endogenous transporters in Xenopus laevis oocytes expressing the Plasmodium falciparum chloroquine resistance transporter, PfCRT. J Biol Chem. 2004;279(38):39438–46.
CAS
PubMed
CrossRef
Google Scholar
Bray PG, et al. PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX. Mol Microbiol. 2006;62(1):238–51.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Martin RE, Kirk K. The malaria parasite’s chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Mol Biol Evol. 2004;21(10):1938–49.
CAS
PubMed
CrossRef
Google Scholar
Tran CV, Saier Jr MH. The principal chloroquine resistance protein of Plasmodium falciparum is a member of the drug/metabolite transporter superfamily. Microbiology. 2004;150(Pt 1):1–3.
CAS
PubMed
CrossRef
Google Scholar
Bray PG, Ward SA. A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum. Pharmacol Ther. 1998;77(1):1–28.
CAS
PubMed
CrossRef
Google Scholar
Martin RE, et al. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science. 2009;325(5948):1680–2.
CAS
PubMed
CrossRef
Google Scholar
Maughan SC, et al. Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci U S A. 2010;107(5):2331–6.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Patzewitz EM, et al. Glutathione transport: a new role for PfCRT in chloroquine resistance. Antioxid Redox Signal. 2013;19(7):683–95.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lehane AM, et al. Degrees of chloroquine resistance in Plasmodium - is the redox system involved? Int J Parasitol Drugs Drug Resist. 2012;2:47–57.
PubMed
CrossRef
CAS
Google Scholar
Wilson CM, et al. Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science. 1989;244(4909):1184–6.
CAS
PubMed
CrossRef
Google Scholar
Zalis MG, et al. Characterization of the pfmdr2 gene for Plasmodium falciparum [published erratum appears in Mol Biochem Parasitol 1994 Feb;63(2):311]. Mol Biochem Parasitol. 1993;62(1):83–92.
CAS
PubMed
CrossRef
Google Scholar
Rubio JP, Cowman AF. Plasmodium falciparum: the pfmdr2 protein is not overexpressed in chloroquine-resistant isolates of the malaria parasite. Exp Parasitol. 1994;79(2):137–47.
CAS
PubMed
CrossRef
Google Scholar
Rubio JP, Thompson JK, Cowman AF. The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. EMBO J. 1996;15(15):4069–77.
CAS
PubMed
PubMed Central
Google Scholar
Foote SJ, et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum [see comments]. Nature. 1990;345(6272):255–8.
CAS
PubMed
CrossRef
Google Scholar
Wilson CM, et al. Amplification of pfmdr 1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol Biochem Parasitol. 1993;57(1):151–60.
CAS
PubMed
CrossRef
Google Scholar
Basco LK, et al. Analysis of pfmdr1 and drug susceptibility in fresh isolates of Plasmodium falciparum from sub-Saharan Africa. Mol Biochem Parasitol. 1995;74(2):157–66.
CAS
PubMed
CrossRef
Google Scholar
Basco LK, et al. Plasmodium falciparum: molecular characterization of multidrug-resistant Cambodian isolates. Exp Parasitol. 1996;82(2):97–103.
CAS
PubMed
CrossRef
Google Scholar
Cowman AF, et al. A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol. 1991;113(5):1033–42.
CAS
PubMed
CrossRef
Google Scholar
Povoa MM, et al. Pfmdr1 Asn1042Asp and Asp1246Tyr polymorphisms, thought to be associated with chloroquine resistance, are present in chloroquine-resistant and -sensitive Brazilian field isolates of Plasmodium falciparum. Exp Parasitol. 1998;88(1):64–8.
CAS
PubMed
CrossRef
Google Scholar
Reed MB, et al. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403(6772):906–9.
CAS
PubMed
CrossRef
Google Scholar
Foote SJ, et al. Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell. 1989;57(6):921–30.
CAS
PubMed
CrossRef
Google Scholar
Cowman AF, Galatis D, Thompson JK. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci U S A. 1994;91(3):1143–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Price RN, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364(9432):438–47.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Price RN, et al. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis. 2006;42(11):1570–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Venkatesan M, et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am J Trop Med Hyg. 2014;91(4):833–43.
PubMed
PubMed Central
CrossRef
Google Scholar
Davis TM, et al. Piperaquine: a resurgent antimalarial drug. Drugs. 2005;65(1):75–87.
CAS
PubMed
CrossRef
Google Scholar
Fan B, et al. In vitro sensitivity of Plasmodium falciparum to chloroquine, piperaquine, pyronaridine and artesunate in Yuxi prefecture of Yunnan province. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 1998;16(6):460–2.
CAS
PubMed
Google Scholar
Yang H, et al. Sensitivity of Plasmodium falciparum to seven antimalarials in China-Laos border. Chung Kuo Chi Sheng Chung Hsueh Yu Chi Sheng Chung Ping Tsa Chih. 1995;13(2):111–3.
CAS
PubMed
Google Scholar
Eastman RT, et al. Piperaquine resistance is associated with a copy number variation on chromosome 5 in drug-pressured Plasmodium falciparum parasites. Antimicrob Agents Chemother. 2011;55(8):3908–16.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Baraka V, et al. In vivo selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemether-lumefantrine and dihydroartemisinin-piperaquine in Burkina Faso. Antimicrob Agents Chemother. 2015;59(1):734–7.
PubMed
CrossRef
CAS
Google Scholar
Pascual A, et al. In vitro piperaquine susceptibility is not associated with the Plasmodium falciparum chloroquine resistance transporter gene. Malar J. 2013;12:431.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Pukrittayakamee S, et al. Quinine in severe falciparum malaria: evidence of declining efficacy in Thailand. Trans R Soc Trop Med Hyg. 1994;88(3):324–7.
CAS
PubMed
CrossRef
Google Scholar
Jelinek T, et al. Quinine resistant falciparum malaria acquired in east Africa. Trop Med Parasitol. 1995;46(1):38–40.
CAS
PubMed
Google Scholar
Segurado AA, di Santi SM, Shiroma M. In vivo and in vitro Plasmodium falciparum resistance to chloroquine, amodiaquine and quinine in the Brazilian Amazon. Rev Inst Med Trop Sao Paulo. 1997;39(2):85–90.
CAS
PubMed
CrossRef
Google Scholar
Cooper RA, et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereo-specific quinine and quinidine responses in Plasmodium falciparum. Mol Pharmacol. 2002;61(1):35–42.
CAS
PubMed
CrossRef
Google Scholar
Menard D, et al. Global analysis of Plasmodium falciparum Na(+)/H(+) exchanger (pfnhe-1) allele polymorphism and its usefulness as a marker of in vitro resistance to quinine. Int J Parasitol Drugs Drug Resist. 2013;3:8–19.
PubMed
CrossRef
Google Scholar
Triglia T, Cowman AF. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1994;91(15):7149–53.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kasekarn W, et al. Molecular characterization of bifunctional hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase from Plasmodium falciparum. Mol Biochem Parasitol. 2004;137(1):43–53.
CAS
PubMed
CrossRef
Google Scholar
Bzik DJ, et al. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proc Natl Acad Sci U S A. 1987;84(23):8360–4.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wang P, et al. Transfection studies to explore essential folate metabolism and antifolate drug synergy in the human malaria parasite Plasmodium falciparum. Mol Microbiol. 2004;51(5):1425–38.
CAS
PubMed
CrossRef
Google Scholar
Watkins WM, et al. Chlorproguanil/dapsone for the treatment of non-severe Plasmodium falciparum malaria in Kenya: a pilot study. Trans R Soc Trop Med Hyg. 1988;82(3):398–403.
CAS
PubMed
CrossRef
Google Scholar
Wootton DG, et al. Open-label comparative clinical study of chlorproguanil-dapsone fixed dose combination (Lapdap) alone or with three different doses of artesunate for uncomplicated Plasmodium falciparum malaria. PLoS One. 2008;3(3):e1779.
PubMed
PubMed Central
CrossRef
Google Scholar
Winstanley P. Chlorproguanil-dapsone (LAPDAP) for uncomplicated falciparum malaria. Trop Med Int Health. 2001;6(11):952–4.
CAS
PubMed
CrossRef
Google Scholar
Brooks DR, et al. Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur J Biochem. 1994;224(2):397–405.
CAS
PubMed
CrossRef
Google Scholar
Triglia T, et al. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1997;94(25):13944–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Triglia T, et al. Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J. 1998;17(14):3807–15.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Triglia T, Cowman AF. The mechanism of resistance to sulfa drugs in Plasmodium falciparum. Drug Resist Updat. 1999;2(1):15–9.
CAS
PubMed
CrossRef
Google Scholar
Wang P, et al. Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins. Mol Biochem Parasitol. 1997;89(2):161–77.
CAS
PubMed
CrossRef
Google Scholar
Wang P, et al. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol. 1997;23(5):979–86.
CAS
PubMed
CrossRef
Google Scholar
Cowman AF, et al. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1988;85(23):9109–13.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Peterson DS, Walliker D, Wellems TE. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci U S A. 1988;85(23):9114–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wu Y, Kirkman LA, Wellems TE. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc Natl Acad Sci U S A. 1996;93(3):1130–4.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yuthavong Y. Basis for antifolate action and resistance in malaria. Microbes Infect. 2002;4(2):175–82.
CAS
PubMed
CrossRef
Google Scholar
Baca AM, et al. Crystal structure of Mycobacterium tuberculosis 7,8-dihydropteroate synthase in complex with pterin monophosphate: new insight into the enzymatic mechanism and sulfa-drug action. J Mol Biol. 2000;302(5):1193–212.
CAS
PubMed
CrossRef
Google Scholar
Sirawaraporn W, Yuthavong Y. Kinetic and molecular properties of dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant Plasmodium chabaudi. Mol Biochem Parasitol. 1984;10(3):355–67.
CAS
PubMed
CrossRef
Google Scholar
Snewin VA, et al. Characterisation of the dihydrofolate reductase-thymidylate synthetase gene from human malaria parasites highly resistant to pyrimethamine. Gene. 1989;76(1):41–52.
CAS
PubMed
CrossRef
Google Scholar
Yuvaniyama J, et al. Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol. 2003;10(5):357–65.
CAS
PubMed
CrossRef
Google Scholar
Kublin JG, et al. Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J Infect Dis. 2002;185(3):380–8.
CAS
PubMed
CrossRef
Google Scholar
WHO. WHO policy recommendation on intermittent preventive treatment during infancy with sulphadoxine-pyrimethamine (SP-IPTi) for Plasmodium falciparum malaria control in Africa. 2010.
Google Scholar
WHO. World Health Organization; WHO Evidence Review Group Intermittent preventive treatment of malaria in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP). 2012.
Google Scholar
Taylor SM, et al. Antenatal receipt of sulfadoxine-pyrimethamine does not exacerbate pregnancy-associated malaria despite the expansion of drug-resistant Plasmodium falciparum: clinical outcomes from the QuEERPAM study. Clin Infect Dis. 2012;55(1):42–50.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cravo P, et al. Antimalarial drugs clear resistant parasites from partially immune hosts. Antimicrob Agents Chemother. 2001;45(10):2897–901.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kinyanjui SM, et al. The antimalarial triazine WR99210 and the prodrug PS-15: folate reversal of in vitro activity against Plasmodium falciparum and a non-antifolate mode of action of the prodrug. Am J Trop Med Hyg. 1999;60(6):943–7.
CAS
PubMed
CrossRef
Google Scholar
van Hensbroek MB, et al. Iron, but not folic acid, combined with effective antimalarial therapy promotes haematological recovery in African children after acute falciparum malaria. Trans R Soc Trop Med Hyg. 1995;89(6):672–6.
PubMed
CrossRef
Google Scholar
Wang P, Sims PF, Hyde JE. A modified in vitro sulfadoxine susceptibility assay for Plasmodium falciparum suitable for investigating Fansidar resistance. Parasitology. 1997;115(Pt 3):223–30.
CAS
PubMed
CrossRef
Google Scholar
Nzila A, et al. Chemosensitization of Plasmodium falciparum by probenecid in vitro. Antimicrob Agents Chemother. 2003;47(7):2108–12.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sowunmi A, et al. Open randomized study of pyrimethamine-sulphadoxine vs. pyrimethamine-sulphadoxine plus probenecid for the treatment of uncomplicated Plasmodium falciparum malaria in children. Trop Med Int Health. 2004;9(5):606–14.
CAS
PubMed
CrossRef
Google Scholar
Salcedo-Sora JE, et al. The molecular basis of folate salvage in Plasmodium falciparum: characterization of two folate transporters. J Biol Chem. 2011;286(52):44659–68.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Nirmalan N, et al. Transcriptional analysis of genes encoding enzymes of the folate pathway in the human malaria parasite Plasmodium falciparum. Mol Microbiol. 2002;46(1):179–90.
CAS
PubMed
CrossRef
Google Scholar
Nirmalan N, Sims PF, Hyde JE. Translational up-regulation of antifolate drug targets in the human malaria parasite Plasmodium falciparum upon challenge with inhibitors. Mol Biochem Parasitol. 2004;136(1):63–70.
CAS
PubMed
CrossRef
Google Scholar
Nixon GL, et al. Antimalarial pharmacology and therapeutics of atovaquone. J Antimicrob Chemother. 2013;68(5):977–85.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fry M, Pudney M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4- (4′-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol. 1992;43(7):1545–53.
CAS
PubMed
CrossRef
Google Scholar
Syafruddin D, Siregar JE, Marzuki S. Mutations in the cytochrome b gene of Plasmodium berghei conferring resistance to atovaquone [In Process Citation]. Mol Biochem Parasitol. 1999;104(2):185–94.
CAS
PubMed
CrossRef
Google Scholar
Birth D, Kao WC, Hunte C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat Commun. 2014;5:4029.
CAS
PubMed
CrossRef
Google Scholar
Seymour KK, et al. dCTP levels are maintained in Plasmodium falciparum subjected to pyrimidine deficiency or excess. Ann Trop Med Parasitol. 1997;91(6):603–9.
CAS
PubMed
CrossRef
Google Scholar
Hammond DJ, Burchell JR, Pudney M. Inhibition of pyrimidine biosynthesis de novo in Plasmodium falciparum by 2-(4-t-butylcyclohexyl)-3-hydroxy-1,4-naphthoquinone in vitro. Mol Biochem Parasitol. 1985;14(1):97–109.
CAS
PubMed
CrossRef
Google Scholar
Painter HJ, et al. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007;446(7131):88–91.
CAS
PubMed
CrossRef
Google Scholar
Bulusu V, Jayaraman V, Balaram H. Metabolic fate of fumarate, a side product of the purine salvage pathway in the intraerythrocytic stages of Plasmodium falciparum. J Biol Chem. 2011;286(11):9236–45.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Biagini GA, et al. Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc Natl Acad Sci U S A. 2012;109(21):8298–303.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
White NJ. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother. 1997;41(7):1413–22.
CAS
PubMed
PubMed Central
Google Scholar
Sanz LM, et al. P. falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action. PLoS One. 2012;7(2):e30949.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lalloo DG, Hill DR. Preventing malaria in travellers. BMJ. 2008;336(7657):1362–6.
PubMed
PubMed Central
CrossRef
Google Scholar
Dembele L, et al. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PLoS One. 2011;6(3):e18162.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gassis S, Rathod PK. Frequency of drug resistance in Plasmodium falciparum: a nonsynergistic combination of 5-fluoroorotate and atovaquone suppresses in vitro resistance. Antimicrob Agents Chemother. 1996;40(4):914–9.
CAS
PubMed
PubMed Central
Google Scholar
Rathod PK, McErlean T, Lee PC. Variations in frequencies of drug resistance in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1997;94(17):9389–93.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Srivastava IK, et al. Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol. 1999;33(4):704–11.
CAS
PubMed
CrossRef
Google Scholar
Chiodini PL, et al. Evaluation of atovaquone in the treatment of patients with uncomplicated Plasmodium falciparum malaria. J Antimicrob Chemother. 1995;36(6):1073–8.
CAS
PubMed
CrossRef
Google Scholar
Looareesuwan S, et al. Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am J Trop Med Hyg. 1996;54(1):62–6.
CAS
PubMed
CrossRef
Google Scholar
Looareesuwan S, et al. Efficacy and safety of atovaquone/proguanil compared with mefloquine for treatment of acute Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg. 1999;60(4):526–32.
CAS
PubMed
CrossRef
Google Scholar
Looareesuwan S, et al. Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Malarone Clinical Trials Study Group. Am J Trop Med Hyg. 1999;60(4):533–41.
CAS
PubMed
CrossRef
Google Scholar
Srivastava IK, Vaidya AB. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother. 1999;43(6):1334–9.
CAS
PubMed
PubMed Central
Google Scholar
Korsinczky M, et al. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother. 2000;44(8):2100–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fivelman QL, et al. Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria. Malar J. 2002;1(1):1.
PubMed
PubMed Central
CrossRef
Google Scholar
Schwartz E, Bujanover S, Kain KC. Genetic confirmation of atovaquone-proguanil-resistant Plasmodium falciparum malaria acquired by a nonimmune traveler to East Africa. Clin Infect Dis. 2003;37(3):450–1.
PubMed
CrossRef
Google Scholar
Fisher N, et al. Cytochrome b mutation Y268S conferring atovaquone resistance phenotype in malaria parasite results in reduced parasite bc(1) catalytic turnover and protein expression. J Biol Chem. 2012;287(13):9731–41.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Schwobel B, et al. Different mutation patterns of atovaquone resistance to Plasmodium falciparum in vitro and in vivo: rapid detection of codon 268 polymorphisms in the cytochrome b as potential in vivo resistance marker. Malar J. 2003;2(1):5.
PubMed
PubMed Central
CrossRef
Google Scholar
Gil JP, et al. Detection of atovaquone and Malarone resistance conferring mutations in Plasmodium falciparum cytochrome b gene (cytb). Mol Cell Probes. 2003;17(2–3):85–9.
CAS
PubMed
CrossRef
Google Scholar
Wichmann O, et al. Malarone treatment failure not associated with previously described mutations in the cytochrome b gene. Malar J. 2004;3(1):14.
PubMed
PubMed Central
CrossRef
Google Scholar
Smilkstein MJ, et al. A drug-selected Plasmodium falciparum lacking the need for conventional electron transport. Mol Biochem Parasitol. 2008;159(1):64–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pesole G, et al. Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol. 1999;48(4):427–34.
CAS
PubMed
CrossRef
Google Scholar
Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985;228(4703):1049–55.
CAS
PubMed
CrossRef
Google Scholar
O’Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin--the debate continues. Molecules. 2010;15(3):1705–21.
PubMed
CrossRef
CAS
Google Scholar
Meshnick SR, et al. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother. 1993;37(5):1108–14.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Meshnick SR, et al. Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol. 1991;49(2):181–9.
CAS
PubMed
CrossRef
Google Scholar
Posner GH, et al. Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. J Med Chem. 1994;37(9):1256–8.
CAS
PubMed
CrossRef
Google Scholar
Posner GH, et al. Further evidence supporting the importance of and the restrictions on a carbon-centered radical for high antimalarial activity of 1,2,4-trioxanes like artemisinin. J Med Chem. 1995;38(13):2273–5.
CAS
PubMed
CrossRef
Google Scholar
Butler AR, et al. EPR evidence for the involvement of free radicals in the iron-catalysed decomposition of qinghaosu (artemisinin) and some derivatives; antimalarial action of some polycyclic endoperoxides. Free Radic Res. 1998;28(5):471–6.
CAS
PubMed
CrossRef
Google Scholar
O’Neill PM, et al. Biomimetic Fe(II)-mediated degradation of arteflene (Ro-42-1611). The first EPR spin-trapping evidence for the previously postulated secondary carbon-centered cyclohexyl radical. J Org Chem. 2000;65(5):1578–82.
PubMed
CrossRef
CAS
Google Scholar
Wu W-M, et al. Unified mechanistic framework for the Fe(II)-induced cleavage of Qinghaosu and derivatives/analogues. The first spin-trapping evidence for the previously postulated secondary C-4 radical. J Am Chem Soc. 1998;120(14):3316–25.
CAS
CrossRef
Google Scholar
Haynes RK, et al. The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. ChemMedChem. 2007;2(10):1480–97.
CAS
PubMed
CrossRef
Google Scholar
Haynes RK, Pai HH-O, Voerste A. Ring opening of artemisinin (qinghaosu) and dihydroartemisinin and interception of the open hydroperoxides with Formation of N-oxides — a chemical model for antimalarial mode of action. Tetrahedron Lett. 1999;40(25):4715–8.
CAS
CrossRef
Google Scholar
Haynes RK, et al. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action. ChemMedChem. 2012;7(12):2204–26.
CAS
PubMed
CrossRef
Google Scholar
Li W, et al. Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet. 2005;1(3):e36.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Wang J, et al. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One. 2010;5(3):e9582.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Olliaro P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol Ther. 2001;89(2):207–19.
CAS
PubMed
CrossRef
Google Scholar
Golenser J, et al. Current perspectives on the mechanism of action of artemisinins. Int J Parasitol. 2006;36(14):1427–41.
CAS
PubMed
CrossRef
Google Scholar
Pandey AV, et al. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem. 1999;274(27):19383–8.
CAS
PubMed
CrossRef
Google Scholar
Bhisutthibhan J, et al. The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem. 1998;273(26):16192–8.
CAS
PubMed
CrossRef
Google Scholar
Eckstein-Ludwig U, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003;424(6951):957–61.
CAS
PubMed
CrossRef
Google Scholar
Jiang JB, et al. Qinghaosu-induced changes in the morphology of Plasmodium inui. Am J Trop Med Hyg. 1985;34(3):424–8.
CAS
PubMed
CrossRef
Google Scholar
Kawai S, Kano S, Suzuki M. Morphologic effects of artemether on Plasmodium falciparum in Aotus trivirgatus. Am J Trop Med Hyg. 1993;49(6):812–8.
CAS
PubMed
CrossRef
Google Scholar
Maeno Y, et al. Morphologic effects of artemisinin in Plasmodium falciparum. Am J Trop Med Hyg. 1993;49(4):485–91.
CAS
PubMed
CrossRef
Google Scholar
Zhao Y, Hanton WK, Lee KH. Antimalarial agents, 2. Artesunate, an inhibitor of cytochrome oxidase activity in Plasmodium berghei. J Nat Prod. 1986;49(1):139–42.
CAS
PubMed
CrossRef
Google Scholar
Krungkrai J, et al. Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health. 1999;30(4):636–42.
CAS
PubMed
Google Scholar
del Pilar Crespo M, et al. Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob Agents Chemother. 2008;52(1):98–109.
PubMed
CrossRef
CAS
Google Scholar
Antoine T, et al. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J Antimicrob Chemother. 2014;69(4):1005–16.
CAS
PubMed
CrossRef
Google Scholar
Flegg JA, et al. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J. 2011;10:339.
PubMed
PubMed Central
CrossRef
Google Scholar
White NJ. The parasite clearance curve. Malar J. 2011;10:278.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mu J, et al. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet. 2010;42(3):268–71.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Witkowski B, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13(12):1043–9.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Witkowski B, et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother. 2013;57(2):914–23.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ariey F, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505(7481):50–5.
PubMed
CrossRef
CAS
Google Scholar
Cheeseman IH, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336(6077):79–82.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Takala-Harrison S, et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci U S A. 2013;110(1):240–5.
CAS
PubMed
CrossRef
Google Scholar
Miotto O, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet. 2013;45(6):648–55.
CAS
PubMed
CrossRef
Google Scholar
Amaratunga C, et al. Artemisinin resistance in Plasmodium falciparum. Lancet Infect Dis. 2014;14(6):449–50.
PubMed
PubMed Central
CrossRef
Google Scholar
Straimer J, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347(6220):428–31.
CAS
PubMed
CrossRef
Google Scholar
Mbengue A, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015;520:683–7.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tucker MS, et al. Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob Agents Chemother. 2012;56(1):302–14.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Teuscher F, et al. Phenotypic changes in artemisinin-resistant Plasmodium falciparum lines in vitro: evidence for decreased sensitivity to dormancy and growth inhibition. Antimicrob Agents Chemother. 2012;56(1):428–31.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Klonis N, et al. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci U S A. 2011;108(28):11405–10.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mok S, et al. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347(6220):431–5.
CAS
PubMed
CrossRef
Google Scholar
WHO. Chemotherapy of malaria. Report of a WHO scientific group. Geneva, World Health Organization (WHO Technical Report Series, No. 375); 1967.
Google Scholar
Bruce-Chwatt LJ, et al. Chemotherapy of malaria. Rev. 2nd ed. Geneva: World Health Organization; 1986.
Google Scholar
Solmaz SR, Hunte C. Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem. 2008;283(25):17542–9.
CAS
PubMed
CrossRef
Google Scholar