Skip to main content

Glycopeptide-Resistance in Enterococci

  • Chapter
  • First Online:
Book cover Antimicrobial Drug Resistance

Abstract

Glycopeptides, such as vancomycin and teicoplanin, act by blocking cell wall formation. Resistance to this class of antibiotics, detected first in 1986, is due to synthesis of altered peptidoglycan precursor ending in D-alanine-D-lactate or D-alanine-D-serine in place of D-alanine-D-alanine and by the removal of precursors terminating in D-alanine. Resistance can be acquired or intrinsic and strains may be resistant to vancomycin and teicoplanin, or to vancomycin only. Nine types of glycopeptide resistance, forming the van alphabet, and their biochemical mechanisms have been described. Furthermore, strains that are dependent on vancomycin for growth have been isolated from clinical samples. Data suggest that resistance could originate in glycopeptide-producing organisms or in soil organisms for VanA type and in anaerobes for VanB type. Since the years 2000, resistance to glycopeptide has disseminated from enterococci to Staphylococcus aureus clinical isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10:266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonten MJ, Willems R, Weinstein RA. Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis. 2001;1:314–25.

    Article  CAS  PubMed  Google Scholar 

  3. Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000;13:686–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schouten MA, Hoogkamp-Korstanje JA, Meis JF, Voss A. Prevalence of vancomycin-resistant enterococci in Europe. Eur J Clin Microbiol Infect Dis. 2000;19:816–22.

    Article  CAS  PubMed  Google Scholar 

  5. Low DE, Keller N, Barth A, Jones RN. Clinical prevalence, antimicrobial susceptibility, and geographic resistance patterns of enterococci: results from the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis. 2001;32 Suppl 2:S133–45.

    Article  CAS  PubMed  Google Scholar 

  6. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. 2008;29:996–1011.

    Article  PubMed  Google Scholar 

  7. Fontana R, Ligozzi M, Pittaluga F, Satta G. Intrinsic penicillin resistance in enterococci. Microb Drug Resist. 1996;2:209–13.

    Article  CAS  PubMed  Google Scholar 

  8. Grayson ML, Eliopoulos GM, Wennersten CB, Ruoff KL, De Girolami PC, Ferraro MJ, Moellering Jr RC. Increasing resistance to β-lactam antibiotics among clinical isolates of Enterococcus faecium: a 22-year review at one institution. Antimicrob Agents Chemother. 1991;35:2180–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moellering Jr RC. The enterococcus: a classic example of the impact of antimicrobial resistance on therapeutic options. J Antimicrob Chemother. 1991;28:1–12.

    Article  PubMed  Google Scholar 

  10. Rybkine T, Mainardi JL, Sougakoff W, Collatz E, Gutmann L. Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of beta-lactam resistance. J Infect Dis. 1998;178:159–63.

    Article  CAS  PubMed  Google Scholar 

  11. Murray BE. Beta-lactamase-producing enterococci. Antimicrob Agents Chemother. 1992;36:2355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gold HS. Vancomycin-resistant enterococci: mechanisms and clinical observations. Clin Infect Dis. 2001;33:210–9.

    Article  CAS  PubMed  Google Scholar 

  13. Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 1990;3:46–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barna JCJ, Williams DH. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Ann Rev Microbiol. 1984;38:339–57.

    Article  CAS  Google Scholar 

  15. Reynolds PE. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis. 1989;8:943–50.

    Article  CAS  PubMed  Google Scholar 

  16. Arthur M, Reynolds P, Courvalin P. Glycopeptide resistance in enterococci. Trends Microbiol. 1996;4:401–7.

    Article  CAS  PubMed  Google Scholar 

  17. Nieto M, Perkins HR. Modifications of the acyl-D-alanyl-D-alanine terminus affecting complex-formation with vancomycin. Biochem J. 1971;123:789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leclercq R, Derlot E, Duval J, Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med. 1988;319:157–61.

    Article  CAS  PubMed  Google Scholar 

  19. Uttley AH, Collins CH, Naidoo J, Georges RC. Vancomycin resistant enterococci. Lancet. 1988;1(8575–6):57–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ramsey AM, Zilberberg MD. Secular trends of hospitalization with vancomycin-resistant enterococcus infection in the United States, 2000–2006. Infect Control Hosp Epidemiol. 2009;30:184–6.

    Article  PubMed  Google Scholar 

  21. Arias CA, Murray BE. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther. 2008;6:637–55.

    Article  CAS  PubMed  Google Scholar 

  22. McCracken M, Wong A, Mitchell R, Gravel D, Conly J, Embil J, Johnston L, Matlow A, Ormiston D, Simor AE, Smith S, Du T, Hizon R, Mulvey MR. Molecular epidemiology of vancomycin-resistant enterococcal bacteraemia: results from the Canadian Nosocomial Infection Surveillance Program, 1999–2009. J Antimicrob Chemother. 2013;68:1505–9.

    Article  CAS  PubMed  Google Scholar 

  23. Bourdon N, Fines-Guyon M, Thiolet JM, Maugat S, Coignard B, Leclercq R, Cattoir V. Changing trends in vancomycin-resistant enterococci in French hospitals, 2001–08. J Antimicrob Chemother. 2011;66:713–21.

    Article  CAS  PubMed  Google Scholar 

  24. Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis. 2007;58:163–70.

    Article  CAS  PubMed  Google Scholar 

  25. Lester CH, Sandvang D, Olsen SS, Schonheyder HC, Jarlov JO, Bangsborg J, Hansen DS, Jensen TG, Frimodt-Moller N, Hammerum AM. Emergence of ampicillin-resistant Enterococcus faecium in Danish hospitals. J Antimicrob Chemother. 2008;62:1203–6.

    Article  CAS  PubMed  Google Scholar 

  26. Top J, Willems R, van der Velden S, Asbroek M, Bonten M. Emergence of clonal complex 17 Enterococcus faecium in The Netherlands. J Clin Microbiol. 2008;46:214–9.

    Article  PubMed  Google Scholar 

  27. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, Klare I, Kristinsson KG, Leclercq R, Lester CH, Lillie M, Novais C, Olsson-Liljequist B, Peixe LV, Sadowy E, Simonsen GS, Top J, Vuopio-Varkila J, Willems RJ, Witte W, Woodford N. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008;13.

    Google Scholar 

  28. Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry. 1991;30:10408–15.

    Article  CAS  PubMed  Google Scholar 

  29. Reynolds PE, Snaith HA, Maguire AJ, Dutka-Malen S, Courvalin P. Analysis of peptidoglycan precursors in vancomycin-resistant Enterococcus gallinarum BM4174. Biochem J. 1994;301:5–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boyd DA, Willey BM, Fawcett D, Gillani N, Mulvey MR. Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob Agents Chemother. 2008;52:2667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Depardieu F, Bonora MG, Reynolds PE, Courvalin P. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol Microbiol. 2003;50:931–48.

    Article  CAS  PubMed  Google Scholar 

  32. Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev. 2007;20:79–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lebreton F, Depardieu F, Bourdon N, Fines-Guyon M, Berger P, Camiade S, Leclercq R, Courvalin P, Cattoir V. D-Ala-D-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother. 2011;55:4606–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu X, Lin D, Yan G, Ye X, Wu S, Guo Y, Zhu D, Hu F, Zhang Y, Wang F, Jacoby GA, Wang M. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother. 2010;54:4643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leclercq R, Dutka-Malen S, Duval J, Courvalin P. Vancomycin resistance gene vanC is specific to Enterococcus gallinarum. Antimicrob Agents Chemother. 1992;36:2005–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Navarro F, Courvalin P. Analysis of genes encoding D-alanine:D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob Agents Chemother. 1994;38:1788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arthur M, Molinas C, Depardieu F, Courvalin P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1993;175:117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Handwerger S, Skoble J. Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother. 1995;39:2446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rosato A, Pierre J, Billot-Klein D, Buu-Hoi A, Gutmann L. Inducible and constitutive expression of resistance to glycopeptides and vancomycin dependence in glycopeptide-resistant Enterococcus avium. Antimicrob Agents Chemother. 1995;39:830–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cercenado E, Unal S, Eliopoulos CT, Rubin LG, Isenberg HD, Moellering Jr RC, Eliopoulos GM. Characterization of vancomycin resistance in Enterococcus durans. J Antimicrob Chemother. 1995;36:821–5.

    Article  CAS  PubMed  Google Scholar 

  41. Hall LMC, Chen HY, Williams RJ. Vancomycin-resistant Enterococcus durans. Lancet. 1992;340:1105.

    Article  CAS  PubMed  Google Scholar 

  42. Torres C, Reguera JA, Sanmartin MJ, Perez-Diaz JC, Baquero F. vanA-mediated vancomycin-resistant Enterococcus spp. in sewage. J Antimicrob Chemother. 1994;33:553–61.

    Article  CAS  PubMed  Google Scholar 

  43. Dutka-Malen S, Blaimont B, Wauters G, Courvalin P. Emergence of high-level resistance to glycopeptides in Enterococcus gallinarum and Enterococcus casseliflavus. Antimicrob Agents Chemother. 1994;38:1675–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ligozzi M, Lo Cascio G, Fontana R. vanA gene cluster in a vancomycin-resistant clinical isolate of Bacillus circulans. Antimicrob Agents Chemother. 1998;42:2055–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Meziane-Cherif D, Saul FA, Moubareck C, Weber P, Haouz A, Courvalin P, Perichon B. Molecular basis of vancomycin dependence in VanA-type Staphylococcus aureus VRSA-9. J Bacteriol. 2010;192:5465–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moubareck C, Meziane-Cherif D, Courvalin P, Perichon B. VanA-type Staphylococcus aureus strain VRSA-7 is partially dependent on vancomycin for growth. Antimicrob Agents Chemother. 2009;53:3657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Perichon B, Courvalin P. Staphylococcus aureus VRSA-11B is a constitutive vancomycin-resistant mutant of vancomycin-dependent VRSA-11A. Antimicrob Agents Chemother. 2012;56(9):4693–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perichon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53:4580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arthur M, Molinas C, Bugg TDH, Wright GD, Walsh CT, Courvalin P. Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1992;36:867–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reynolds PE, Depardieu F, Dutka-Malen S, Arthur M, Courvalin P. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol Microbiol. 1994;13:1065–70.

    Article  CAS  PubMed  Google Scholar 

  51. Wu Z, Wright GD, Walsh CT. Overexpression, purification and characterization of VanX, a D, D-dipeptidase which is essential for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry. 1995;34:2455–63.

    Article  CAS  PubMed  Google Scholar 

  52. Arthur M, Depardieu F, Cabanié L, Reynolds P, Courvalin P. Requirement of the VanY and VanX D, D-peptidases for glycopeptide resistance in enterococci. Mol Microbiol. 1998;30:819–30.

    Article  CAS  PubMed  Google Scholar 

  53. Arthur M, Depardieu F, Snaith HA, Reynolds PE, Courvalin P. Contribution of VanY D, D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors. Antimicrob Agents Chemother. 1994;38:1899–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arthur M, Depardieu F, Molinas C, Reynolds P, Courvalin P. The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene. 1995;154:87–92.

    Article  CAS  PubMed  Google Scholar 

  55. Arthur M, Molinas C, Courvalin P. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1992;174:2582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wright GD, Holman TR, Walsh CT. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry. 1993;32:5057–63.

    Article  CAS  PubMed  Google Scholar 

  57. Arthur M, Depardieu F, Courvalin P. Regulated interactions between partner and non partner sensors and responses regulators that control glycopeptide resistance gene expression in enterococci. Microbiology. 1999;145:1849–58.

    Article  CAS  PubMed  Google Scholar 

  58. Arthur M, Depardieu F, Gerbaud G, Galimand M, Leclercq R, Courvalin P. The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J Bacteriol. 1997;179:97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Holman TR, Wu Z, Wanner BL, Walsh CT. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry. 1994;33:4625–31.

    Article  CAS  PubMed  Google Scholar 

  60. Clark NC, Cooksey RC, Hill BC, Swenson JM, Tenover FC. Characterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob Agents Chemother. 1993;37:2311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dutka-Malen S, Leclercq R, Coutant V, Duval J, Courvalin P. Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria. Antimicrob Agents Chemother. 1990;34:1875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Handwerger S, Pucci MJ, Kolokathis A. Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob Agents Chemother. 1990;34:358–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hashimoto Y, Tanimoto K, Ozawa Y, Murata T, Ike Y. Amino acid substitutions in the VanS sensor of the VanA-type vancomycin-resistant Enterococcus strains result in high-level vancomycin resistance and low-level teicoplanin resistance. FEMS Microbiol Lett. 2000;185:247–54.

    Article  CAS  PubMed  Google Scholar 

  64. Jensen LB, Ahrens P, Dons L, Jones RN, Hammerum AM, Aarestrup FM. Molecular analysis of Tn1546 in Enterococcus faecium isolated from animals and humans. J Clin Microbiol. 1998;36:437–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lauderdale TL, McDonald LC, Shiau YR, Chen PC, Wang HY, Lai JF, Ho M. Vancomycin-resistant enterococci from humans and retail chickens in Taiwan with unique VanB phenotype-vanA genotype incongruence. Antimicrob Agents Chemother. 2002;46:525–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Palepou MF, Adebiyi AM, Tremlett CH, Jensen LB, Woodford N. Molecular analysis of diverse elements mediating VanA glycopeptide resistance in enterococci. J Antimicrob Chemother. 1998;42:605–12.

    Article  CAS  PubMed  Google Scholar 

  67. Willems RJ, Top J, van den Braak N, van Belkum A, Mevius DJ, Hendriks G, van Santen-Verheuvel M, van Embden JD. Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob Agents Chemother. 1999;43:483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oh JY, An S, Jin JS, Lee YC, Cho DT, Lee JC. Phenotypic and genotypic differences of the vancomycin-resistant Enterococcus faecium isolates from humans and poultry in Korea. J Microbiol. 2007;45:466–72.

    CAS  PubMed  Google Scholar 

  69. Song JH, Ko KS, Oh WS, Park S, Heo ST, Kwon KT, Ryu SY, Peck KR, Lee NY. High frequency of vancomycin-resistant Enterococcus faecium isolates with VanB phenotype and vanA genotype in Korean hospitals. Diagn Microbiol Infect Dis. 2006;56:401–6.

    Article  CAS  PubMed  Google Scholar 

  70. Handwerger S, Skoble J, Discotto LF, Pucci MJ. Heterogeneity of the vanA gene cluster in clinical isolates of enterococci from the northeastern United States. Antimicrob Agents Chemother. 1995;39:362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sung K, Khan SA, Nawaz MS. Genetic diversity of Tn1546-like elements in clinical isolates of vancomycin-resistant enterococci. Int J Antimicrob Agents. 2008;31:549–54.

    Article  CAS  PubMed  Google Scholar 

  72. Simonsen GS, Myhre MR, Dahl KH, Olsvik O, Sundsfjord A. Typeability of Tn1546-like elements in vancomycin-resistant enterococci using long-range PCRs and specific analysis of polymorphic regions. Microb Drug Resist. 2000;6:49–57.

    Article  CAS  PubMed  Google Scholar 

  73. Werner G, Klare I, Fleige C, Witte W. Increasing rates of vancomycin resistance among Enterococcus faecium isolated from German hospitals between 2004 and 2006 are due to wide clonal dissemination of vancomycin-resistant enterococci and horizontal spread of vanA clusters. Int J Med Microbiol. 2008;298:515–27.

    Article  CAS  PubMed  Google Scholar 

  74. Darini AL, Palepou MF, Woodford N. Nucleotide sequence of IS1542, an insertion sequence identified within VanA glycopeptide resistance elements of enterococci. FEMS Microbiol Lett. 1999;173:341–6.

    Article  CAS  PubMed  Google Scholar 

  75. Gu L, Cao B, Liu Y, Guo P, Song S, Li R, Dai H, Wang C. A new Tn1546 type of VanB phenotype-vanA genotype vancomycin-resistant Enterococcus faecium isolates in mainland China. Diagn Microbiol Infect Dis. 2009;63:70–5.

    Article  CAS  PubMed  Google Scholar 

  76. Lee WG, Huh JY, Cho SR, Lim YA. Reduction in glycopeptide resistance in vancomycin-resistant enterococci as a result of vanA cluster rearrangements. Antimicrob Agents Chemother. 2004;48:1379–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Woodford N, Adebiyi AM, Palepou MF, Cookson BD. Diversity of VanA glycopeptide resistance elements in enterococci from humans and nonhuman sources. Antimicrob Agents Chemother. 1998;42:502–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. MacKinnon MG, Drebot MA, Tyrrell GJ. Identification and characterization of IS1476, an insertion sequence-like element that disrupts VanY function in a vancomycin-resistant Enterococcus faecium strain. Antimicrob Agents Chemother. 1997;41:1805–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Park IJ, Lee WG, Lim YA, Cho SR. Genetic rearrangements of Tn1546-like elements in vancomycin-resistant Enterococcus faecium isolates collected from hospitalized patients over a seven-year period. J Clin Microbiol. 2007;45:3903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Darini AL, Palepou MF, James D, Woodford N. Disruption of vanS by IS1216V in a clinical isolate of Enterococcus faecium with VanA glycopeptide resistance. Antimicrob Agents Chemother. 1999;43:995–6.

    CAS  PubMed  Google Scholar 

  81. Park IJ, Lee WG, Shin JH, Lee KW, Woo GJ. VanB phenotype-vanA genotype Enterococcus faecium with heterogeneous expression of teicoplanin resistance. J Clin Microbiol. 2008;46:3091–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schouten MA, Willems RJ, Kraak WA, Top J, Hoogkamp-Korstanje JA, Voss A. Molecular analysis of Tn1546-like elements in vancomycin-resistant enterococci isolated from patients in Europe shows geographic transposon type clustering. Antimicrob Agents Chemother. 2001;45:986–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huh JY, Lee WG, Lee K, Shin WS, Yoo JH. Distribution of insertion sequences associated with Tn1546-like elements among Enterococcus faecium isolates from patients in Korea. J Clin Microbiol. 2004;42:1897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Quintiliani Jr R, Evers S, Courvalin P. The vanB gene confers various levels of self-transferable resistance to vancomycin in enterococci. J Infect Dis. 1993;167:1220–3.

    Article  CAS  PubMed  Google Scholar 

  85. Arthur M, Depardieu F, Reynolds P, Courvalin P. Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol Microbiol. 1996;21:33–44.

    Article  CAS  PubMed  Google Scholar 

  86. Evers S, Courvalin P. Regulation of VanB-type vancomycin resistance gene expression by the VanSB-VanRB two-component regulatory system in Enterococcus faecalis V583. J Bacteriol. 1996;178:1302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Depardieu F, Courvalin P, Msadek T. A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium. Mol Microbiol. 2003;50:1069–83.

    Article  CAS  PubMed  Google Scholar 

  88. Depardieu F, Courvalin P, Kolb A. Binding sites of VanRB and sigma70 RNA polymerase in the vanB vancomycin resistance operon of Enterococcus faecium BM4524. Mol Microbiol. 2005;57:550–64.

    Article  CAS  PubMed  Google Scholar 

  89. Foucault ML, Depardieu F, Courvalin P, Grillot-Courvalin C. Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc Natl Acad Sci U S A. 2010;107:16964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baptista M, Depardieu F, Reynolds P, Courvalin P, Arthur M. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol Microbiol. 1997;25:93–105.

    Article  CAS  PubMed  Google Scholar 

  91. Aslangul E, Baptista M, Fantin B, Depardieu F, Arthur M, Courvalin P, Carbon C. Selection of glycopeptide-resistant mutants of VanB-type Enterococcus faecalis BM4281 in vitro and in experimental endocarditis. J Infect Dis. 1997;175:598–605.

    Article  CAS  PubMed  Google Scholar 

  92. Hayden MK, Trenholme GM, Schultz JE, Sahm DF. In vivo development of teicoplanin resistance in a VanB Enterococcus faecium isolate. J Infect Dis. 1993;167:1224–7.

    Article  CAS  PubMed  Google Scholar 

  93. Kawalec M, Gniadkowski M, Kedzierska J, Skotnicki A, Fiett J, Hryniewicz W. Selection of a teicoplanin-resistant Enterococcus faecium mutant during an outbreak caused by vancomycin-resistant enterococci with the VanB phenotype. J Clin Microbiol. 2001;39:4274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arthur M, Depardieu F, Reynolds P, Courvalin P. Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob Agents Chemother. 1999;43:1875–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Baptista M, Depardieu F, Courvalin P, Arthur M. Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis. Antimicrob Agents Chemother. 1996;40:2291–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dahl KH, Simonsen GS, Olsvik O, Sundsfjord A. Heterogeneity in the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrob Agents Chemother. 1999;43:1105–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gold HS, Unal S, Cercenado E, Thauvin-Eliopoulos C, Eliopoulos GM, Wennersten CB, Moellering Jr RC. A gene conferring resistance to vancomycin but not teicoplanin in isolates of Enterococcus faecalis and Enterococcus faecium demonstrates homology with vanB, vanA, and vanC genes of enterococci. Antimicrob Agents Chemother. 1993;37:1604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Patel R, Uhl JR, Kohner P, Hopkins MK, Steckelberg JM, Kline B, Cockerill 3rd FR. DNA sequence variation within vanA, vanB, vanC-1, and vanC-2/3 genes of clinical Enterococcus isolates. Antimicrob Agents Chemother. 1998;42:202–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Quintiliani Jr R, Courvalin P. Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome. FEMS Microbiol Lett. 1994;119:359–64.

    Article  CAS  PubMed  Google Scholar 

  100. Quintiliani Jr R, Courvalin P. Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene. 1996;172:1–8.

    Article  CAS  PubMed  Google Scholar 

  101. Dahl KH, Lundblad EW, Rokenes TP, Olsvik O, Sundsfjord A. Genetic linkage of the vanB2 gene cluster to Tn5382 in vancomycin-resistant enterococci and characterization of two novel insertion sequences. Microbiology. 2000;146:1469–79.

    Article  CAS  PubMed  Google Scholar 

  102. McGregor KF, Nolan C, Young HK, Palepou MF, Tysall L, Woodford N. Prevalence of the vanB2 gene cluster in VanB glycopeptide-resistant enterococci in the United Kingdom and the Republic of Ireland and its association with a Tn5382-like element. Antimicrob Agents Chemother. 2001;45:367–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rice LB. Emergence of vancomycin-resistant enterococci. Emerg Infect Dis. 2001;7:183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Carias LL, Rudin SD, Donskey CJ, Rice LB. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol. 1998;180:4426–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lopez M, Hormazabal JC, Maldonado A, Saavedra G, Baquero F, Silva J, Torres C, del Campo R. Clonal dissemination of Enterococcus faecalis ST201 and Enterococcus faecium CC17-ST64 containing Tn5382-vanB2 among 16 hospitals in Chile. Clin Microbiol Infect. 2009;15:586–8.

    Article  CAS  PubMed  Google Scholar 

  106. Lu JJ, Chang TY, Perng CL, Lee SY. The vanB2 gene cluster of the majority of vancomycin-resistant Enterococcus faecium isolates from Taiwan is associated with the pbp5 gene and is carried by Tn5382 containing a novel insertion sequence. Antimicrob Agents Chemother. 2005;49:3937–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Garnier F, Taourit S, Glaser P, Courvalin P, Galimand M. Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology. 2000;146:1481–9.

    Article  CAS  PubMed  Google Scholar 

  108. Umeda A, Garnier F, Courvalin P, Galimand M. Association between the vanB2 glycopeptide resistance operon and Tn1549 in enterococci from France. J Antimicrob Chemother. 2002;50:253–6.

    Article  CAS  PubMed  Google Scholar 

  109. Clewell DB, Flannagan SE, Jaworski DD. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 1995;3:229–36.

    Article  CAS  PubMed  Google Scholar 

  110. Lee WG, Kim W. Identification of a novel insertion sequence in vanB2-containing Enterococcus faecium. Lett Appl Microbiol. 2003;36:186–90.

    Article  CAS  PubMed  Google Scholar 

  111. Boyd DA, Kibsey P, Roscoe D, Mulvey MR. Enterococcus faecium N03-0072 carries a new VanD-type vancomycin resistance determinant: characterization of the VanD5 operon. J Antimicrob Chemother. 2004;54:680–3.

    Article  CAS  PubMed  Google Scholar 

  112. Casadewall B, Courvalin P. Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J Bacteriol. 1999;181:3644–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Depardieu F, Foucault ML, Bell J, Dubouix A, Guibert M, Lavigne JP, Levast M, Courvalin P. New combinations of mutations in VanD-Type vancomycin-resistant Enterococcus faecium, Enterococcus faecalis, and Enterococcus avium strains. Antimicrob Agents Chemother. 2009;53:1952–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Depardieu F, Kolbert M, Pruul H, Bell J, Courvalin P. VanD-type vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother. 2004;48:3892–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Depardieu F, Reynolds PE, Courvalin P. VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob Agents Chemother. 2003;47:7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Perichon B, Casadewall B, Reynolds P, Courvalin P. Glycopeptide-resistant Enterococcus faecium BM4416 is a VanD-type strain with an impaired D-Alanine:D-Alanine ligase. Antimicrob Agents Chemother. 2000;44:1346–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dutta I, Reynolds PE. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob Agents Chemother. 2002;46:3125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dutta I, Reynolds PE. The vanC-3 vancomycin resistance gene cluster of Enterococcus flavescens CCM439. J Antimicrob Chemother. 2003;51:703–6.

    Article  CAS  PubMed  Google Scholar 

  119. Billot-Klein D, Gutmann L, Sablé S, Guittet E, van Heijenoort J. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J Bacteriol. 1994;176:2398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grohs P, Gutmann L, Legrand R, Schoot B, Mainardi JL. Vancomycin resistance is associated with serine-containing peptidoglycan in Enterococcus gallinarum. J Bacteriol. 2000;182:6228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Panesso D, Abadia-Patino L, Vanegas N, Reynolds PE, Courvalin P, Arias CA. Transcriptional analysis of the vanC cluster from Enterococcus gallinarum strains with constitutive and inducible vancomycin resistance. Antimicrob Agents Chemother. 2005;49:1060–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sahm DF, Free L, Handwerger S. Inducible and constitutive expression of vanC-1 encoded resistance to vancomycin in Enterococcus gallinarum. Antimicrob Agents Chemother. 1995;39:1480–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Clark NC, Teixeira LM, Facklam RR, Tenover FC. Detection and differentiation of vanC-1, vanC-2, and vanC-3 glycopeptide resistance genes in enterococci. J Clin Microbiol. 1998;36:2294–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Arias CA, Courvalin P, Reynolds PE. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob Agents Chemother. 2000;44:1660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Meziane-Cherif D, Stogios PJ, Evdokimova E, Savchenko A, Courvalin P. Structural basis for the evolution of vancomycin resistance D, D-peptidases. Proc Natl Acad Sci U S A. 2014;111(16):5872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Reynolds PE, Arias CA, Courvalin P. Gene vanXYC encodes D, D -dipeptidase (VanX) and D, D-carboxypeptidase (VanY) activities in vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol. 1999;34:341–9.

    Article  CAS  PubMed  Google Scholar 

  127. Arias CA, Martin-Martinez M, Blundell TL, Arthur M, Courvalin P, Reynolds PE. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol. 1999;31:1653–64.

    Article  CAS  PubMed  Google Scholar 

  128. Arias CA, Weisner J, Blackburn JM, Reynolds PE. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174. Microbiology. 2000;146:1727–34.

    Article  CAS  PubMed  Google Scholar 

  129. Ambur OH, Reynolds PE, Arias CA. D-Ala:D-Ala ligase gene flanking the vanC cluster: evidence for presence of three ligase genes in vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob Agents Chemother. 2002;46:95–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Abadia Patino L, Courvalin P, Perichon B. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J Bacteriol. 2002;184:6457–64.

    Article  PubMed  CAS  Google Scholar 

  131. Abadia-Patino L, Christiansen K, Bell J, Courvalin P, Perichon B. VanE-type vancomycin-resistant Enterococcus faecalis clinical isolates from Australia. Antimicrob Agents Chemother. 2004;48:4882–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Boyd DA, Cabral T, Van Caeseele P, Wylie J, Mulvey MR. Molecular characterisation of the vanE gene cluster in vancomycin-resistant Enterococcus faecalis N00-410 isolated in Canada. Antimicrob Agents Chemother. 2002;46:1977–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Boyd DA, Du T, Hizon R, Kaplen B, Murphy T, Tyler S, Brown S, Jamieson F, Weiss K, Mulvey MR. VanG-type vancomycin-resistant Enterococcus faecalis strains isolated in Canada. Antimicrob Agents Chemother. 2006;50:2217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Depardieu F, Mejean V, Courvalin P. Competition between VanUG and VanRG activator leads to rheostatic control of vancomycin resistance operon. PLoS Genet. 2015;11:e1005170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Van Bambeke F, Chauvel M, Reynolds PE, Fraimow HS, Courvalin P. Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother. 1999;43:41–7.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sifaoui F, Gutmann L. Vancomycin dependence in a vanA-producing Enterococcus avium strain with a nonsense mutation in the natural D-Ala:D-Ala ligase gene. Antimicrob Agents Chemother. 1997;41:1409.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Dever LL, Smith SM, Handwerger S, Eng RH. Vancomycin-dependent Enterococcus faecium isolated from stool following oral vancomycin therapy. J Clin Microbiol. 1995;33:2770–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Farrag N, Eltringham I, Liddy H. Vancomycin-dependent Enterococcus faecalis. Lancet. 1996;348:1581–2.

    Article  CAS  PubMed  Google Scholar 

  139. Fraimow HS, Jungkind DL, Lander DW, Delso DR, Dean JL. Urinary tract infection with an Enterococcus faecalis isolate that requires vancomycin for growth. Ann Intern Med. 1994;121:22–6.

    Article  CAS  PubMed  Google Scholar 

  140. Green M, Shlaes JH, Barbadora K, Shlaes DM. Bacteremia due to vancomycin-dependent Enterococcus faecium. Clin Infect Dis. 1995;20:712–4.

    Article  CAS  PubMed  Google Scholar 

  141. Stewart B, Hall L, Duke B, Ball D. Vancomycin-dependent enterococci: curious phenomenon or serious threat? J Antimicrob Chemother. 1997;40:734–5.

    Article  CAS  PubMed  Google Scholar 

  142. San Millan A, Depardieu F, Godreuil S, Courvalin P. VanB-type Enterococcus faecium clinical isolate successively inducibly resistant to, dependent on, and constitutively resistant to vancomycin. Antimicrob Agents Chemother. 2009;53:1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gay Elisha B, Courvalin P. Analysis of genes encoding D-alanine:D-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene. 1995;152:79–83.

    Article  Google Scholar 

  144. Handwerger S, Pucci MJ, Volk KJ, Liu J, Lee M. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J Bacteriol. 1994;176:260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Marshall CG, Broadhead G, Leskiw BK, Wright GD. D-Ala:D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin -resistance ligases VanA and VanB. Proc Natl Acad Sci U S A. 1997;94:6480–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Marshall CG, Lessard IA, Park I, Wright GD. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother. 1998;42:2215–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Marshall CG, Wright GD. DdlN from vancomycin-producing Amycolatopsis orientalis C329.2 is a VanA homologue with D-alanyl-D-lactate ligase activity. J Bacteriol. 1998;180:5792–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Marshall CG, Wright GD. The glycopeptide antibiotic producer Streptomyces toyocaensis NRRL15009 has both D-alanyl:D-alanine and D-alanyl:D-lactate ligases. FEMS Microbiol Lett. 1997;157:295–9.

    Article  CAS  PubMed  Google Scholar 

  149. Patel R, Piper K, Cockerill 3rd FR, Steckelberg JM, Yousten AA. The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob Agents Chemother. 2000;44:705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rippere K, Patel R, Uhl JR, Piper KE, Steckelberg JM, Kline BC, Cockerill 3rd FR, Yousten AA. DNA sequence resembling vanA and vanB in the vancomycin-resistant biopesticide Bacillus popilliae. J Infect Dis. 1998;178:584–8.

    Article  CAS  PubMed  Google Scholar 

  151. Guardabassi L, Perichon B, van Heijenoort J, Blanot D, Courvalin P. Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil. Antimicrob Agents Chemother. 2005;49:4227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ballard SA, Pertile KK, Lim M, Johnson PD, Grayson ML. Molecular characterization of vanB elements in naturally occurring gut anaerobes. Antimicrob Agents Chemother. 2005;49:1688–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Launay A, Ballard SA, Johnson PD, Grayson ML, Lambert T. Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the Gut of Gnotobiotic Mice. Antimicrob Agents Chemother. 2006;50:1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarraga AM, Wang H, Holden MT, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet. 2006;38:779–86.

    Article  PubMed  CAS  Google Scholar 

  155. Ammam F, Marvaud JC, Lambert T. Distribution of the vanG-like gene cluster in Clostridium difficile clinical isolates. Can J Microbiol. 2012;58:547–51.

    Article  CAS  PubMed  Google Scholar 

  156. Ammam F, Meziane-Cherif D, Mengin-Lecreulx D, Blanot D, Patin D, Boneca IG, Courvalin P, Lambert T, Candela T. The functional vanG Cd cluster of Clostridium difficile does not confer vancomycin resistance. Mol Microbiol. 2013;89:612–25.

    Article  CAS  PubMed  Google Scholar 

  157. Zhu W, Murray PR, Huskins WC, Jernigan JA, McDonald LC, Clark NC, Anderson KF, McDougal LK, Hageman JC, Olsen-Rasmussen M, Frace M, Alangaden GJ, Chenoweth C, Zervos MJ, Robinson-Dunn B, Schreckenberger PC, Reller LB, Rudrik JT, Patel JB. Dissemination of an Enterococcus Inc18-Like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54:4314–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kacica M, McDonald LC. Vancomycin-resistant Staphylococcus aureus-New York, 2004. Morb Mortal Wkly Rep. 2004;53:322–3.

    Google Scholar 

  159. Miller D, Urdaneta V, Weltman A, Park S. Vancomycin-resistant Staphylococcus aureus-Pennsylvania, 2002. Morb Mortal Wkly Rep. 2002;51:902.

    Google Scholar 

  160. Sievert DM, Boulton ML, Stolman G, Johnson D, Stobierski MG, Downes FP, Somsel PA, Rudrik JT, Brown WJ, Hafeez W, Lundstrom T, Flanagan E, Johnson R, Mitchell J, Chang S. Staphylococcus aureus resistant to vancomycin—United States, 2002. MMWR Morb Mortal Wkly Rep. 2002;51:565–7.

    Google Scholar 

  161. Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin Infect Dis. 2008;46:668–74.

    Article  CAS  PubMed  Google Scholar 

  162. Tenover FC. Vancomycin-resistant Staphylococcus aureus: a perfect but geographically limited storm? Clin Infect Dis. 2008;46:675–7.

    Article  CAS  PubMed  Google Scholar 

  163. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science. 2003;302:1569–71.

    Article  CAS  PubMed  Google Scholar 

  164. Noble WC, Virani Z, Cree RGA. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett. 1992;93:195–8.

    Article  CAS  Google Scholar 

  165. Perichon B, Courvalin P. Synergism between beta-lactams and glycopeptides against VanA-type methicillin-resistant Staphylococcus aureus and heterologous expression of the vanA operon. Antimicrob Agents Chemother. 2006;50:3622–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhu W, Clark NC, McDougal LK, Hageman J, McDonald LC, Patel JB. Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob Agents Chemother. 2008;52:452–7.

    Article  CAS  PubMed  Google Scholar 

  167. Perichon B, Courvalin P. Heterologous expression of the enterococcal vanA operon in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2004;48:4281–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Foucault ML, Courvalin P, Grillot-Courvalin C. Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53:2354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice M. Courvalin M.D., F.R.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Depardieu, F., Courvalin, P.M. (2017). Glycopeptide-Resistance in Enterococci. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_20

Download citation

Publish with us

Policies and ethics