Experimental Applications on Multi-Sensory Affective Stimulation



In this chapter, we report in detail several experimental methods concerning affective stimulation and results gathered applying EDA models to SC data. In particular, we focus on two specific research fields: emotion recognition and assessment of mood/mental disorder.


Heart Rate Variability Autonomic Nervous System Emotion Recognition Alternate Current Bipolar Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [5]
    Gross, J., & Muñoz, R. (1995). Emotion regulation and mental health. Clinical Psychology: Science and Practice, 2(2), 151–164.Google Scholar
  2. [8]
    Valenza, G., Gentili, C., Lanata, A., & Scilingo, E. (2013). Mood recognition in bipolar patients through the psyche platform: preliminary evaluations and perspectives. Artificial Intelligence In Medicine, 57(1), 49–58.PubMedCrossRefGoogle Scholar
  3. [9]
    Greco, A., Lanata, A., Valenza, G., Rota, G., Vanello, N., & Scilingo, E. (2012). On the deconvolution analysis of electrodermal activity in bipolar patients. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6691–6694). IEEE.Google Scholar
  4. [10]
    Vanello, N., Guidi, A., Gentili, C., Werner, S., Bertschy, G., Valenza, G., et al. (2012). Speech analysis for mood state characterization in bipolar patients. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2104–2107). IEEE.Google Scholar
  5. [11]
    Greco, A., Valenza, G., Lanata, A., Rota, G., & Scilingo, E. P. (2014). Electrodermal activity in bipolar patients during affective elicitation. IEEE Journal of Biomedical and Health Informatics, 18(6), 1865–1873.PubMedCrossRefGoogle Scholar
  6. [15]
    Boucsein, W. (2012). Electrodermal activity (2nd ed). New York: Springer Science & Business Media.CrossRefGoogle Scholar
  7. [16]
    Benedek, M., & Kaernbach, C. (2010). Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology, 47(4), 647–658.PubMedPubMedCentralGoogle Scholar
  8. [57]
    Lanata, A., Valenza, G., & Scilingo, E. (2012). A novel EDA glove based on textile-integrated electrodes for affective computing. Medical and Biological Engineering and Computing, 50, 1163–1172.PubMedCrossRefGoogle Scholar
  9. [89]
    Kira, Y., Ogura, T., Aramaki, S., Kubo, T., Hayasida, T., & Hirasawa, Y. (2001). Sympathetic skin response evoked by respiratory stimulation as a measure of sympathetic function. Clinical Neurophysiology, 112(5), 861–865.PubMedCrossRefGoogle Scholar
  10. [90]
    Lang, P., Bradley, M., & Cuthbert, B. (2005). International affective picture system iaps): Digitized photographs, instruction manual and affective ratings. Technical Report A-6. University of Florida.Google Scholar
  11. [92]
    Lang, P., Greenwald, M., Bradley, M., & Hamm, A. (1993). Looking at pictures: Affective, facial, visceral, & behavioral reactions. Psychophysiology, 30(3), 261–273.PubMedCrossRefGoogle Scholar
  12. [127]
    Nasoz, F., Alvarez, K., Lisetti, C., & Finkelstein, N. (2003). Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology and Work, 6, 4–14.CrossRefGoogle Scholar
  13. [135]
    Valenza, G., Greco, A., Gentili, C., Lanata, A., Sebastiani, L., Menicucci, D., et al. (2016). Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philosophical Transactions of the Royal Society A, 374(2067), 20150176.CrossRefGoogle Scholar
  14. [156]
    Calvo, R., & D’Mello, S. (2010). Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 1(1), 18–37.CrossRefGoogle Scholar
  15. [160]
    Lanatà, A., Valenza, G., Greco, A., Gentili, C., Bartolozzi, R., Bucchi, F., et al. (2015). How the autonomic nervous system and driving style change with incremental stressing conditions during simulated driving. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1505–1517.CrossRefGoogle Scholar
  16. [165]
    Kim, K., Bang, S., & Kim, S. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing, 42(3), 419–427.PubMedCrossRefGoogle Scholar
  17. [169]
    Li, L., & Chen, J. (2006). Emotion recognition using physiological signals. In Advances in artificial reality and tele-existence. Lecture Notes in Computer Science (Vol. 4282, pp. 437–446). Berlin/Heidelberg: Springer.Google Scholar
  18. [192]
    Lin, Y., Wang, C., Jung, T., Wu, T., Jeng, S., Duann, J., & Chen, J. (2010). Eeg-based emotion recognition in music listening. IEEE Transactions on Biomedical Engineering, 57(7), 1798–1806.PubMedCrossRefGoogle Scholar
  19. [193]
    Wagner, J., Kim, J., & André, E. (2005). From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. In 2005 IEEE International Conference on Multimedia and Expo (pp. 940–943). IEEE.Google Scholar
  20. [199]
    Healey, J. (2009). Affect detection in the real world: Recording and processing physiological signals. In 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, 2009 (ACII 2009) (pp. 1–6). IEEE.Google Scholar
  21. [202]
    Lang, P., Bradley, M., & Cuthbert, B. (1997). International affective picture system (IAPS): Technical manual and affective ratings. Gainesville: The Center for Research in Psychophysiology, University of Florida.Google Scholar
  22. [207]
    Chatel-Goldman, J., Congedo, M., Jutten, C., & Schwartz, J.-L. (2014). Touch increases autonomic coupling between romantic partners. Frontiers in Behavioral Neuroscience, 8, 95. Scholar
  23. [208]
    Liljencrantz, J., & Olausson, H. (2014). Tactile c fibers and their contributions to pleasant sensations and to tactile allodynia. Frontiers in Behavioral Neuroscience, 8, 37. Scholar
  24. [209]
    Zotterman, Y. (1939). Touch, pain and tickling: An electro-physiological investigation on cutaneous sensory nerves. Journal of Physiology, 95(1), 1–28.PubMedPubMedCentralCrossRefGoogle Scholar
  25. [210]
    Rolls, E. T. (2010). The affective and cognitive processing of touch, oral texture, and temperature in the brain. Neuroscience & Biobehavioral Reviews, 34(2), 237–245.CrossRefGoogle Scholar
  26. [211]
    Triscoli, C., Olausson, H., Sailer, U., Ignell, H., & Croy, I. (2013). CT-optimized skin stroking delivered by hand or robot is comparable. Frontiers in Behavioral Neuroscience, 7, 208.PubMedPubMedCentralCrossRefGoogle Scholar
  27. [212]
    Löken, L. S., Wessberg, J., McGlone, F., & Olausson, H. (2009). Coding of pleasant touch by unmyelinated afferents in humans. Nature Neuroscience, 12(5), 547–548.PubMedCrossRefGoogle Scholar
  28. [222]
    Valenza, G., Nardelli, M., Lanata, A., Gentili, C., Bertschy, G., Paradiso, R., et al., Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis. IEEE Journal of Biomedical and Health Informatics, 18(5), 1625–1635.Google Scholar
  29. [227]
    Iacono, W. G., Lykken, D. T., Peloquin, L. J., Lumry, A. E., Valentine, R. H., & Tuason, V. B. (1983). Electrodermal activity in euthymic unipolar and bipolar affective disorders: A possible marker for depression. Archives of General Psychiatry, 40(5), 557.PubMedCrossRefGoogle Scholar
  30. [229]
    Damasio, A. R. (1998). Emotion in the perspective of an integrated nervous system. Brain Research Reviews, 26(2), 83–86.PubMedCrossRefGoogle Scholar
  31. [230]
    Coan, J. A., & Allen, J. J. (2007). Handbook of emotion elicitation and assessment. Oxford: Oxford university press.Google Scholar
  32. [231]
    Ruiz-Padial, E., Vila, J., & Thayer, J. (2011). The effect of conscious and non-conscious presentation of biologically relevant emotion pictures on emotion modulated startle and phasic heart rate. International Journal of Psychophysiology, 79(3), 341–346.PubMedCrossRefGoogle Scholar
  33. [232]
    Beissner, F., Meissner, K., Bär, K.-J., & Napadow, V. (2013). The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function. The Journal of Neuroscience, 33(25), 10,503–10,511.Google Scholar
  34. [233]
    Heller, A., Johnstone, T., Shackman, A., Light, S., Peterson, M., Kolden, G., et al. (2009). Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proceedings of the National Academy of Sciences, 106(52), 22,445–22,450.Google Scholar
  35. [234]
    Picard, R. W. (2003). Affective computing: Challenges. International Journal of Human-Computer Studies, 59(1), 55–64.CrossRefGoogle Scholar
  36. [235]
    Rottenberg, J., Ray, R. R., & Gross, J. J. (in press). Emotion elicitation using films. In J. A. Coan & J. J. B. Allen (Eds.), The handbook of emotion elicitation and assessment. New York: Oxford University Press.Google Scholar
  37. [236]
    Nasoz, F., Alvarez, K., Lisetti, C. L., & Finkelstein, N. (2004). Emotion recognition from physiological signals using wireless sensors for presence technologies. Cognition, Technology & Work, 6(1), 4–14.CrossRefGoogle Scholar
  38. [237]
    Pecchinenda, A. (1996). The affective significance of skin conductance activity during a difficult problem-solving task. Cognition & Emotion, 10(5), 481–504.CrossRefGoogle Scholar
  39. [238]
    Scheirer, J., Fernandez, R., Klein, J., & Picard, R. W. (2002). Frustrating the user on purpose: A step toward building an affective computer. Interacting with Computers, 14(2), 93–118.CrossRefGoogle Scholar
  40. [239]
    Ilves, M., & Surakka, V. (2012). Heart rate responses to synthesized affective spoken words. Advances in Human-Computer Interaction, 2012, 14.CrossRefGoogle Scholar
  41. [240]
    Yang, Y.-H., & Chen, H. H. (2011). Music emotion recognition. Milton Park/Abingdon-on-Thames/Oxfordshire: Taylor & Francis Group.Google Scholar
  42. [242]
    Kim, J., & Andre, E. (2008). Emotion recognition based on physiological changes in music listening. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(12), 2067–2083.PubMedCrossRefGoogle Scholar
  43. [243]
    Ramakrishnan, S. (2012). Recognition of emotion from speech: A review. In S. Ramakrishnan (Ed.), Speech enhancement, modeling and recognition–algorithms and applications (p. 121). ISBN: 978-953-51-0291-5,2012. InTech, Available from:
  44. [244]
    Levenson, R. W. (1988). Emotion and the autonomic nervous system: A prospectus for research on autonomic specificity. Social psychophysiology and emotion: Theory and clinical applications (pp. 17–42). Oxford: Wiley.Google Scholar
  45. [247]
    Bianchi, M., Valenza, G., Serio, A., Lanata, A., Greco, A., Nardelli, M., et al. (2014). Design and preliminary affective characterization of a novel fabric-based tactile display. In 2014 IEEE Haptics Symposium (HAPTICS) (pp. 591–596). IEEE.Google Scholar
  46. [248]
    Valenza, G., Lanata, A., & Scilingo, E. (2012). The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Transactions on Affective Computing, 3(2), 237–249.CrossRefGoogle Scholar
  47. [249]
    Bradley, M., & Lang, P. J. (1999). The International affective digitized sounds (IADS) stimuli, instruction manual and affective ratings. NIMH Center for the Study of Emotion and Attention. Gainesville: University of Florida.Google Scholar
  48. [250]
    Bensafi, M., Rouby, C., Farget, V., Bertrand, B., Vigouroux, M., & Holley, A. (2002). Autonomic nervous system responses to odours: The role of pleasantness and arousal. Chemical Senses, 27(8), 703–709.PubMedCrossRefGoogle Scholar
  49. [251]
    Gibbons, J. D., & Chakraborti, S. (2011). Nonparametric statistical inference. Berlin: Springer.CrossRefGoogle Scholar
  50. [252]
    Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 153–158.CrossRefGoogle Scholar
  51. [253]
    Wang, J.-C., Wang, J.-F., He, K. W., & Hsu, C.-S. (2006). Environmental sound classification using hybrid svm/knn classifier and MPEG-7 audio low-level descriptor. In International Joint Conference on Neural Networks, 2006 (IJCNN06) (pp. 1731–1735). IEEE.Google Scholar
  52. [254]
    Kearns, M., & Ron, D. (1999). Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Computation, 11(6), 1427–1453.PubMedCrossRefGoogle Scholar
  53. [255]
    Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. New York: Wiley.Google Scholar
  54. [256]
    Kohavi, R., & Provost, F. (1988). Glossary of terms. Machine Learning, 30, 271–274.Google Scholar
  55. [257]
    Lemke, M. R., Fischer, C. J., Wendorff, T., Fritzer, G., Rupp, Z., & Tetzlaff, S. (2005). Modulation of involuntary and voluntary behavior following emotional stimuli in healthy subjects. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(1), 69–76.PubMedCrossRefGoogle Scholar
  56. [260]
    Palomba, D., Angrilli, A., & Mini, A. (1997). Visual evoked potentials, heart rate responses and memory to emotional pictorial stimuli. International Journal of Psychophysiology, 27(1), 55–67.PubMedCrossRefGoogle Scholar
  57. [261]
    Junghöfer, M., Schupp, H. T., Stark, R., & Vaitl, D. (2005). Neuroimaging of emotion: Empirical effects of proportional global signal scaling in fMRI data analysis. NeuroImage, 25(2), 520–526.PubMedCrossRefGoogle Scholar
  58. [262]
    Jackson Davis, W., Rahman, M. A., Smith, L. J., Burns, A., Senecal, L., McArthur, D., et al. (1995). Properties of human affect induced by static color slides (IAPS): Dimensional, categorical and electromyographic analysis. Biological Psychology, 41(3), 229–253.CrossRefGoogle Scholar
  59. [263]
    Sloan, D. M., Bradley, M. M., Dimoulas, E., & Lang, P. J. (2002). Looking at facial expressions: Dysphoria and facial EMG. Biological Psychology, 60(2), 79–90.PubMedCrossRefGoogle Scholar
  60. [264]
    Gavazzeni, J., Wiens, S., & Fischer, H. (2008). Age effects to negative arousal differ for self-report and electrodermal activity. Psychophysiology, 45(1), 148–151.PubMedGoogle Scholar
  61. [266]
    Greco, A., Lanata, A., Valenza, G., Scilingo, E. P., & Citi, L. (2014). Electrodermal activity processing: A convex optimization approach. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2290–2293). IEEE.Google Scholar
  62. [267]
    Pollatos, O., Herbert, B. M., Matthias, E., & Schandry, R. (2007). Heart rate response after emotional picture presentation is modulated by interoceptive awareness. International Journal of Psychophysiology, 63(1), 117–124.PubMedCrossRefGoogle Scholar
  63. [268]
    Lang, P. (1995). The emotion probe. Studies of motivation and attention. The American Psychologist, 50(5), 372.Google Scholar
  64. [269]
    McCurdy, H. G. (1950). Consciousness and the galvanometer. Psychological Review, 57(6), 322.PubMedCrossRefGoogle Scholar
  65. [270]
    Bradley, M. M., & Lang, P. J. (2007). The international affective digitized sounds (iads): Affective ratings of sounds and instruction manual. Technical Report B-3, University of Florida, Gainesville.Google Scholar
  66. [271]
    Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Cuthbert: NIMH, Center for the Study of Emotion & Attention.Google Scholar
  67. [272]
    Gobl, C., & Ni, A. (2003). The role of voice quality in communicating emotion, mood and attitude. Speech Communication, 40(1), 189–212.CrossRefGoogle Scholar
  68. [273]
    Goldstein, A. (1980). Thrills in response to music and other stimuli. Physiological Psychology, 8(1), 126–129.CrossRefGoogle Scholar
  69. [274]
    Johna, S. (1991). Music structure and emotional response: Some empirical findings. Psychology of Music, 991(9), L120.Google Scholar
  70. [275]
    Marcell, M., Malatanos, M., Leahy, C., & Comeaux, C. (2007). Identifying, rating, and remembering environmental sound events. Behavior Research Methods, 39(3), 561–569.PubMedCrossRefGoogle Scholar
  71. [276]
    Gaver, W. W. (1993). What in the world do we hear? An ecological approach to auditory event perception. Ecological Psychology, 5(1), 1–29.CrossRefGoogle Scholar
  72. [277]
    Blood, A. J., & Zatorre, R. J. (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11,818–11,823.Google Scholar
  73. [278]
    Koelsch, S., Fritz, T., Müller, K., Friederici, A. D., et al. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239–250.PubMedCrossRefGoogle Scholar
  74. [279]
    Anders, S., Eippert, F., Weiskopf, N., & Veit, R. (2008). The human amygdala is sensitive to the valence of pictures and sounds irrespective of arousal: An fMRI study. Social Cognitive and Affective Neuroscience, 3(3), 233–243.PubMedPubMedCentralCrossRefGoogle Scholar
  75. [280]
    Roque, A. L., Valenti, V. E., Guida, H. L., Campos, M. F., Knap, A., Vanderlei, L. C. M., et al. (2013). The effects of auditory stimulation with music on heart rate variability in healthy women. Clinics, 68(7), 960–967.PubMedPubMedCentralCrossRefGoogle Scholar
  76. [281]
    Orini, M., Bailon, R., Enk, R., Koelsch, S., Mainardi, L., & Laguna, P. (2010). A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Medical & Biological Engineering & Computing, 48(5), 423–433.CrossRefGoogle Scholar
  77. [282]
    Anttonen, J., & Surakka, V. (2005). Emotions and heart rate while sitting on a chair. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 491–499). ACM.Google Scholar
  78. [283]
    Ivonin, L., Chang, H.-M., Chen, W., & Rauterberg, M. (2013). Unconscious emotions: Quantifying and logging something we are not aware of. Personal and Ubiquitous Computing, 17(4), 663–673.CrossRefGoogle Scholar
  79. [284]
    Verona, E., Patrick, C. J., Curtin, J. J., Bradley, M. M., & Lang, P. J. (2004). Psychopathy and physiological response to emotionally evocative sounds. Journal of Abnormal Psychology, 113(1), 99.PubMedCrossRefGoogle Scholar
  80. [285]
    Hariharan, A., & Adam, M. T. P. (2015). Blended emotion detection for decision support. IEEE Transactions on Human-Machine Systems, 45(4), 510–517.CrossRefGoogle Scholar
  81. [286]
    Storm, H. (2008). Changes in skin conductance as a tool to monitor nociceptive stimulation and pain. Current Opinion in Anesthesiology, 21(6), 796–804.PubMedCrossRefGoogle Scholar
  82. [287]
    Hellerud, B., & Storm, H. (2002). Skin conductance and behaviour during sensory stimulation of preterm and term infants. Early Human Development, 70(1), 35–46.PubMedCrossRefGoogle Scholar
  83. [288]
    Olausson, H., Cole, J., Rylander, K., McGlone, F., Lamarre, Y., Wallin, B. G., et al. (2008). Functional role of unmyelinated tactile afferents in human hairy skin: Sympathetic response and perceptual localization. Experimental Brain Research, 184(1), 135–140.PubMedCrossRefGoogle Scholar
  84. [289]
    Löken, L. S., Evert, M., & Wessberg, J. (2011). Pleasantness of touch in human glabrous and hairy skin: Order effects on affective ratings. Brain Research, 1417, 9–15.PubMedCrossRefGoogle Scholar
  85. [290]
    Klöcker, A., Oddo, C. M., Camboni, D., Penta, M., & Thonnard, J.-L. (2014). Physical factors influencing pleasant touch during passive fingertip stimulation. PloS One, 9(7), e101361.PubMedPubMedCentralCrossRefGoogle Scholar
  86. [291]
    Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.PubMedCrossRefGoogle Scholar
  87. [292]
    Posner, J., Russell, J. A., & Peterson, B. S. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(03), 715–734.PubMedPubMedCentralCrossRefGoogle Scholar
  88. [293]
    Herz, R. S., & Engen, T. (1996). Odor memory: review and analysis. Psychonomic Bulletin & Review, 3(3), 300–313.CrossRefGoogle Scholar
  89. [294]
    Van Toller, S. (1988). Emotion and the brain. In Perfumery (pp. 121–143). Berlin: Springer.CrossRefGoogle Scholar
  90. [295]
    Alaoui-Ismaili, O., Robin, O., Rada, H., Dittmar, A., & Vernet-Maury, E. (1997). Basic emotions evoked by odorants: Comparison between autonomic responses and self-evaluation. Physiology & Behavior, 62(4), 713–720.CrossRefGoogle Scholar
  91. [296]
    Lorig, T. S., Huffman, E., DeMartino, A., & DeMarco, J. (1991). The effects of low concentration odors on eeg activity and behavior. Journal of Psychophysiology, 5(1), 69–77.Google Scholar
  92. [297]
    Aggleton, J. P., & Mishkin, M. (1986). The amygdala: sensory gateway to the emotions. Emotion: Theory, Research and Experience, 3, 281–299.Google Scholar
  93. [298]
    Price, J. L. (1987). The central olfactory and accessory olfactory systems. In T. E. Finger, & W. L. Silver (Eds.), Neurobiology of Taste and Smell (pp. 179–203). New York: Wiley.Google Scholar
  94. [299]
    Greco, A., Valenza, G., Nardelli, M., Bianchi, M., Citi, L., & Scilingo, E. P. (2016). Force-velocity assessment of caress-like stimuli through the electrodermal activity processing: Advantages of a convex optimization approach. IEEE Transactions on Human-Machine Systems, PP(99), 1–10.Google Scholar
  95. [300]
    Van Toller, C., Kirk-Smith, M., Wood, N., Lombard, J., & Dodd, G. (1983). Skin conductance and subjective assessments associated with the odour of 5-α-androstan-3-one. Biological Psychology, 16(1), 85–107.PubMedCrossRefGoogle Scholar
  96. [302]
    Brauchli, P., Rüegg, P. B., Etzweiler, F., & Zeier, H. (1995). Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chemical Senses, 20(5), 505–515.PubMedCrossRefGoogle Scholar
  97. [303]
    Uryvaev, Y., Golubeva, N., & Nechaev, A. (1986). Differences in human involuntary reactions to perceptible and imperceptible odors. In Doklady Akademii Nauk SSSR, 290, 501–504.Google Scholar
  98. [304]
    Henion, K. E. (1971). Odor pleasantness and intensity: A single dimension? Journal of Experimental Psychology, 90(2), 275.PubMedCrossRefGoogle Scholar
  99. [305]
    Moskowitz, H. R., Dravnieks, A., & Gerbers, C. (1974). Odor intensity and pleasantness of butanol. Journal of Experimental Psychology, 103(2), 216.CrossRefGoogle Scholar
  100. [307]
    Doty, R. L. (1975). An examination of relationships between the pleasantness, intensity, and concentration of 10 odorous stimuli. Perception & Psychophysics, 17(5), 492–496.CrossRefGoogle Scholar
  101. [308]
    Alaoui-Ismaili, O., Vernet-Maury, E., Dittmar, A., Delhomme, G., & Chanel, J. (1997). Odor hedonics: Connection with emotional response estimated by autonomic parameters. Chemical Senses, 22(3), 237–248.PubMedCrossRefGoogle Scholar
  102. [309]
    Kring, A. M., & Gordon, A. H. (1998). Sex differences in emotion: Expression, experience, and physiology. Journal of Personality and Social Psychology, 74(3), 686.PubMedCrossRefGoogle Scholar
  103. [313]
    Robin, O., Rousmans, S., Dittmar, A., & Vernet-Maury, E. (2003). Gender influence on emotional responses to primary tastes. Physiology & Behavior, 78(3), 385–393.CrossRefGoogle Scholar
  104. [314]
    Wrase, J., Klein, S., Gruesser, S. M., Hermann, D., Flor, H., Mann, K., et al. (2003). Gender differences in the processing of standardized emotional visual stimuli in humans: a functional magnetic resonance imaging study. Neuroscience Letters, 348(1), 41–45.PubMedCrossRefGoogle Scholar
  105. [315]
    Soussignan, R., & Schall, B. (1996). Children’s facial responsiveness to odors: Influences of hedonic valence of odor, gender, age, & social presence. Developmental Psychology, 32(2), 367.CrossRefGoogle Scholar
  106. [316]
    Yousem, D. M., Maldjian, J. A., Siddiqi, F., Hummel, T., Alsop, D. C., Geckle, R. J., et al. (1999). Gender effects on odor-stimulated functional magnetic resonance imaging. Brain Research, 818(2), 480–487.PubMedCrossRefGoogle Scholar
  107. [317]
    Naudin, M., El-Hage, W., Gomes, M., Gaillard, P., Belzung, C., & Atanasova, B. (2012). State and trait olfactory markers of major depression. PLoS One, 7(10), e46938.PubMedPubMedCentralCrossRefGoogle Scholar
  108. [318]
    Kroenke, K., Spitzer, R., & Williams, J. (2001). The PHQ-9. Journal of General Internal Medicine, 16(9), 606–613.PubMedPubMedCentralCrossRefGoogle Scholar
  109. [319]
    Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.CrossRefGoogle Scholar
  110. [320]
    Siegel, S. (1956). The Mann-Whitney U test. Nonparametric statistics for the behavioral sciences (pp. 116–127). New York: McGraw-Hill.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Information Engineering, Bioengineering and Robotics Research Center “E. Piaggio”University of PisaPisaItaly

Personalised recommendations