Modeling for the Analysis of the EDA



As described in the previous chapter, EDA broadly refers to any alterations in the electrical properties of the skin. The most frequently used measure of EDA is the SC. The SC signal can be decomposed in two components, tonic and phasic, which have different time scales and relationships to exogeneous stimuli. Tonic phenomena include slow drifts of the baseline skin conductance level (SCL) and spontaneous fluctuations (SF) in SC (Boucsein, Electrodermal activity, 2nd edn. Springer Science & Business Media, New York, 2012). The phasic component, i.e., the skin conductance response (SCR), reflects the short-time response to the stimulus.


Stratum Corneum Parasympathetic Nervous System Activity Impulse Response Function Skin Conductance Response Skin Conductance Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Benedek, M., & Kaernbach, C. (2010). A continuous measure of phasic electrodermal activity. Journal of neuroscience methods, 190(1), 80–91.CrossRefPubMedPubMedCentralGoogle Scholar
  2. [14]
    Edelberg, R. (1993). Electrodermal mechanisms: A critique of the two-effector hypothesis and a proposed replacement. In Progress in electrodermal research (pp. 7–29). Berlin: Springer.CrossRefGoogle Scholar
  3. [15]
    Boucsein, W. (2012). Electrodermal activity (2nd ed). New York: Springer Science & Business Media.CrossRefGoogle Scholar
  4. [16]
    Benedek, M., & Kaernbach, C. (2010). Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology, 47(4), 647–658.PubMedPubMedCentralGoogle Scholar
  5. [17]
    Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (Chap. 7). Cambridge: Cambridge University Press.Google Scholar
  6. [23]
    Boucsein, W. (1992). Electrodermal activity (2nd ed.). New York: Springer Science & Business Media.CrossRefGoogle Scholar
  7. [61]
    Breska, A., Maoz, K., & Ben-Shakhar, G. (2011). Interstimulus intervals for skin conductance response measurement. Psychophysiology, 48(4), 437–440.CrossRefPubMedGoogle Scholar
  8. [62]
    Barry, R. J., Feldmann, S., Gordon, E., Cocker, K. I., & Rennie, C. (1993). Elicitation and habituation of the electrodermal orienting response in a short interstimulus interval paradigm. International Journal of Psychophysiology, 15(3), 247–253.CrossRefPubMedGoogle Scholar
  9. [63]
    Lim, C. L., Rennie, C., Barry, R. J., Bahramali, H., Lazzaro, I., Manor, B., et al. (1997). Decomposing skin conductance into tonic and phasic components. International Journal of Psychophysiology, 25(2), 97–109.CrossRefPubMedGoogle Scholar
  10. [64]
    Bach, D. R., & Friston, K. J. (2013). Model-based analysis of skin conductance responses: Towards causal models in psychophysiology. Psychophysiology, 50(1), 15–22.CrossRefPubMedGoogle Scholar
  11. [65]
    Alexander, D., Trengove, C., Johnston, P., Cooper, T., August, J., & Gordon, E. (2005). Separating individual skin conductance responses in a short interstimulus-interval paradigm. Journal of Neuroscience Methods, 146(1), 116–123.CrossRefPubMedGoogle Scholar
  12. [66]
    Bach, D. R. (2014). A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis. Biological Psychology, 103, 63–68.CrossRefPubMedPubMedCentralGoogle Scholar
  13. [67]
    Chaspari, T., Tsiartas, A., Stein, L., Cermak, S., & Narayanan, S. (2015). Sparse representation of electrodermal activity with knowledge-driven dictionaries. IEEE Transactions on Biomedical Engineering, 62(3), 960–971.CrossRefPubMedGoogle Scholar
  14. [68]
    Boyd, S. P., & Vandenberghe, L. (2004) Convex optimization. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. [69]
    Greco, A., Valenza, G., Lanata, A., Scilingo, E., & Citi, L. (2016). cvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Transactions on Biomedical Engineering, 63(4), 797–804.PubMedGoogle Scholar
  16. [70]
    Karenbach, C. (2005). Ledalab-a software package for the analysis of phasic electrodermal activity. Technical Report, Allgemeine Psychologie, Institut für Psychologie.Google Scholar
  17. [71]
    Gustafsson, F. (1996). Determining the initial states in forward-backward filtering. IEEE Transactions on Signal Processing, 44(4), 988–992.CrossRefGoogle Scholar
  18. [72]
    Mitra, S. (2001). Digital signal processing. a computer-based approach. New York: McGraw-HillGoogle Scholar
  19. [73]
    Schneider, R. (1987). A mathematical model of human skin conductance. Psychophysiology, 24(5), 610.Google Scholar
  20. [74]
    Garrett, E. (1994). The Bateman function revisited: A critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination. Journal of Pharmacokinetics and Pharmacodynamics, 22(2), 103–128.CrossRefGoogle Scholar
  21. [75]
    Macefield, V., & Wallin, B. (1996). The discharge behaviour of single sympathetic neurones supplying human sweat glands. Journal of the Autonomic Nervous System, 61(3), 277–286.CrossRefPubMedGoogle Scholar
  22. [76]
    Nishiyama, T., Sugenoya, J., Matsumoto, T., Iwase, S., & Mano, T. (2001). Irregular activation of individual sweat glands in human sole observed by a videomicroscopy. Autonomic Neuroscience, 88(1), 117–126.CrossRefPubMedGoogle Scholar
  23. [77]
    Bach, D. R., Flandin, G., Friston, K. J., & Dolan, R. J. (2010). Modelling event-related skin conductance responses. International Journal of Psychophysiology, 75(3), 349–356.CrossRefPubMedPubMedCentralGoogle Scholar
  24. [78]
    Bach, D. R., Friston, K. J., & Dolan, R. J. (2013). An improved algorithm for model-based analysis of evoked skin conductance responses. Biological Psychology, 94(3), 490–497.CrossRefPubMedPubMedCentralGoogle Scholar
  25. [79]
    Vogelstein, J. T., Packer, A. M., Machado, T. A., Sippy, T., Babadi, B., Yuste, R. et al. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104(6), 3691–3704.CrossRefPubMedPubMedCentralGoogle Scholar
  26. [80]
    O’Brien, M. S., Sinclair, A. N., & Kramer, S. M. (1994). Recovery of a sparse spike time series by L1 norm deconvolution. IEEE Transactions on Signal Processing, 42(12), 3353–3365.CrossRefGoogle Scholar
  27. [82]
    de Rooi, J., & Eilers, P. (2011). Deconvolution of pulse trains with the L0 penalty. Analytica Chimica Acta, 705(1), 218–226.CrossRefPubMedGoogle Scholar
  28. [83]
    Levinson, D., & Edelberg, R. (1985). Scoring criteria for response latency and habituation in electrodermal research: a critique. Psychophysiology, 22(4), 417–426.CrossRefPubMedGoogle Scholar
  29. [84]
    Ishchenko, A., & Shev’ev, P. (1989). Automated complex for multiparameter analysis of the galvanic skin response signal. Biomedical Engineering, 23(3), 113–117.CrossRefGoogle Scholar
  30. [85]
    Posada-Quintero, H. F., Florian, J. P., Orjuela-Cañón, A. D., Aljama-Corrales, T., Charleston-Villalobos, S., & Chon, K. H. (2016). Power spectral density analysis of electrodermal activity for sympathetic function assessment. Annals of Biomedical Engineering, 44, 1–12.CrossRefGoogle Scholar
  31. [86]
    Grassi, G., & Esler, M. (1999). How to assess sympathetic activity in humans. Journal of Hypertension, 17(6), 719–734.CrossRefPubMedGoogle Scholar
  32. [87]
    Bauer, A., Malik, M., Schmidt, G., Barthel, P., Bonnemeier, H., Cygankiewicz, I., et al. (2008). Heart rate turbulence: Standards of measurement, physiological interpretation, and clinical use: International society for Holter and noninvasive electrophysiology consensus. Journal of the American College of Cardiology, 52(17), 1353–1365.CrossRefPubMedGoogle Scholar
  33. [88]
    Crider, A., & Lunn, R. (1971). Electrodermal lability as a personality dimension. Journal of Experimental Research in Personality, 5(2), 145–150.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Information Engineering, Bioengineering and Robotics Research Center “E. Piaggio”University of PisaPisaItaly

Personalised recommendations