Electrodermal Phenomena and Recording Techniques



Electrodermal activity (EDA) is the general term used to define autonomic changes in the electrical properties of the skin. One of the most frequently used measures of EDA is skin conductance (SC), which can be quantified by applying an electrical potential between two points of skin contact, usually the medial or distal phalanxes of the non-dominant hand, and measuring the resulting electric current between them.


Stratum Corneum Alternate Current Sweat Gland Skin Conductance Skin Conductance Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [12]
    Fowles, D., Christie, M., Edelberg, R., Grings, W., Lykken, D., & Venables, P. (1981). Publication recommendations for electrodermal measurements, Psychophysiology, 18(3), 232–239.CrossRefPubMedGoogle Scholar
  2. [13]
    Edelberg, R. (1972). Electrical activity of the skin: Its measurement and uses in psychophysiology. Handbook of psychophysiology (Vol. 12, p. 1011). New York: Holt.Google Scholar
  3. [15]
    Boucsein, W. (2012). Electrodermal activity (2nd ed). New York: Springer Science & Business Media.CrossRefGoogle Scholar
  4. [16]
    Benedek, M., & Kaernbach, C. (2010). Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology, 47(4), 647–658.PubMedPubMedCentralGoogle Scholar
  5. [17]
    Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (Chap. 7). Cambridge: Cambridge University Press.Google Scholar
  6. [18]
    Schmidt, S., & Walach, H. (2000). Electrodermal activity (EDA)–state-of-the-art measurements and techniques for parapsychological purposes. Journal of Parapsychology, 64(2), 139.Google Scholar
  7. [19]
    Roth, W. T., Dawson, M. E., & Filion, D. L. (2012). Publication recommendations for electrodermal measurements. Psychophysiology, 49, 1017–1034.CrossRefPubMedGoogle Scholar
  8. [20]
    Greco, A., Lanata, A., Valenza, G., Rota, G., Vanello, N., & Scilingo, E. P. (2012). On the deconvolution analysis of electrodermal activity in bipolar patients. Proceedings of the 34th IEEE EMBS Conference (Vol. 2012, pp. 6691–6694).Google Scholar
  9. [21]
    Greco, A., Valenza, G., Lanata, A., Rota, G., & Scilingo, E. (2014). Electrodermal activity in bipolar patients during affective elicitation. IEEE Journal of Biomedical and Health Informatics, 18(6), 1865–1873.CrossRefPubMedGoogle Scholar
  10. [22]
    Venables, P., & Christie, M. (1980). Electrodermal activity. Techniques in Psychophysiology, 54(3), 3–67.Google Scholar
  11. [23]
    Boucsein, W. (1992). Electrodermal activity (2nd ed.). New York: Springer Science & Business Media.CrossRefGoogle Scholar
  12. [24]
    Millington, P., & Wilkinson, R. (1983). Skin. In R. J. Harrison, & R. M. McMinn (Series Eds.) Biological structure and function (Vol. 9, pp. 83–98). Cambridge (Great Britain): Cambridge University Press.Google Scholar
  13. [27]
    Quay, W. (1977). Structure and function of skin glands. In Chemical signals in vertebrates (pp. 1–16). Berlin: Springer.CrossRefGoogle Scholar
  14. [28]
    Kuno, Y.(1956). Human perspiration (no. 285). Illinois: Thomas.Google Scholar
  15. [29]
    Pinkus, H. (1952). Examination of the epidermis by the strip method. Journal of Investigative Dermatology, 19(6), 431–447.CrossRefPubMedGoogle Scholar
  16. [30]
    Herrmann, F., & Ippen, H. (1973). Biochemie der Haut:: 71 Tab. Thieme. Stuttgart.Google Scholar
  17. [31]
    Montagna, W. (2012). The structure and function of skin 3E. New York: Academic.Google Scholar
  18. [32]
    Sato, K. (1983). The physiology and pharmacology of the eccrine sweat gland. Biochemistry and Physiology of the Skin, 1, 569–595.Google Scholar
  19. [33]
    Martin, I. (1980). Techniques in psychophysiology (Vol. 6). New York: Wiley.Google Scholar
  20. [34]
    Fowles, D. C. (1986). The eccrine system and electrodermal activity. Psychophysiology: Systems, Processes, and Applications, 1, 51–96.Google Scholar
  21. [35]
    Bagshaw, M. H., Kimble, D. P., & Pribram, K. H. (1965). The gsr of monkeys during orienting and habituation and after ablation of the amygdala, hippocampus and inferotemporal cortex. Neuropsychologia, 3(2), 111–119.CrossRefGoogle Scholar
  22. [36]
    Montagu, J., & Coles, E. (1966). Mechanism and measurement of the galvanic skin response. Psychological Bulletin, 65(5), 261.CrossRefPubMedGoogle Scholar
  23. [37]
    Edelberg, R. (1983). The effects of initial levels of sweat duct filling and skin hydration on electrodermal response amplitude. Psychophysiology, 20(5), 550–557.CrossRefPubMedGoogle Scholar
  24. [38]
    Boucsein, W., Schaefer, F., & Neijenhuisen, H. (1989). Continuous recordings of impedance and phase angle during electrodermal reactions and the locus of impedance change. Psychophysiology, 26(3), 369–376.CrossRefPubMedGoogle Scholar
  25. [39]
    Martínez-Rodrigo, A., Zangróniz, R., Pastor, J. M., & Fernández-Caballero, A. (2015). Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In Ambient intelligence for health (pp. 213–223). New York: Springer.CrossRefGoogle Scholar
  26. [40]
    Martinsen, Ø., Grimnes, S., & Sveen, O. (1997). Dielectric properties of some keratinised tissues. part 1: Stratum corneum and nail in situ. Medical and Biological Engineering and Computing, 35(3), 172–176.CrossRefPubMedGoogle Scholar
  27. [41]
    Hanson, M. A., Powell, Jr. H. C., Barth, A. T., Ringgenberg, K., Calhoun, B. H., Aylor, J. H., et al. (2009). Body area sensor networks: Challenges and opportunities. Computer, 42(1), 58.CrossRefGoogle Scholar
  28. [45]
    Garbarino, M., Lai, M., Bender, D., Picard, R. W., & Tognetti, S. (2014). Empatica e3—a wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth) (pp. 39–42). IEEE.Google Scholar
  29. [46]
    Martinsen, O., & Grimnes, S. (1998). On using single frequency electrical measurements for skin hydration assessment. Innovation et Technologie en Biologie et Médecine, 19, 395–400.Google Scholar
  30. [48]
    Martinsen, Ø. G., Grimnes, S., Nilsen, J. K., Tronstad, C., Jang, W., Kim, H. et al. (2008). Gravimetric method for in vitro calibration of skin hydration measurements. IEEE Transactions on Biomedical Engineering, 55(2), 728–732.CrossRefPubMedGoogle Scholar
  31. [49]
    Picard, R. (2010). Emotion research by the people, for the people. Emotion Review, 2(3), 250.CrossRefGoogle Scholar
  32. [50]
    Marieke van Doorena, J.J.G. (Gert-Jan) de Vriesa, & Janssena, J. H. (2012). Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiology & Behavior, 106(2), 298–304.Google Scholar
  33. [51]
    Poh, M.-Z., Swenson, N. C., & Picard, R. W. (2010). A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering, 57(5), 1243–1252.CrossRefPubMedGoogle Scholar
  34. [52]
    Strauss, M., Reynolds, C., Hughes, S., Park, K., McDarby, G., & Picard, R. W. (2005). The handwave bluetooth skin conductance sensor. In International Conference on Affective Computing and Intelligent Interaction (pp. 699–706). Springer.Google Scholar
  35. [53]
    Thought Technology Ltd: ProComp Infinity Encoder and amplifiers. (2016).
  36. [54]
    Biopac Systems, Inc. (2016).
  37. [55]
    BioSemi Instrumentation. (2016).
  38. [56]
    Scheirer, J., & Picard, R. (2001). The Galvactivator: A glove that senses and communicates skin conductivity. In Proceedings of the 9th International Conference on Human-Computer Interaction.Google Scholar
  39. [57]
    Lanata, A., Valenza, G., & Scilingo, E. (2012). A novel EDA glove based on textile-integrated electrodes for affective computing. Medical and Biological Engineering and Computing, 50, 1163–1172.CrossRefPubMedGoogle Scholar
  40. [58]
    Brainquiry, B. V. (2005) PET-GSR Wireless.
  41. [59]
    Analog Device: AD9833 Low Power, Programmable Waveform Generator. (2016).
  42. [60]
    Texas Instrument: MSP430 ultra-low-power Microcontrollers, (2016).

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Information Engineering, Bioengineering and Robotics Research Center “E. Piaggio”University of PisaPisaItaly

Personalised recommendations