Dynamics of Reservoir Computing at the Edge of Stability

  • Toshiyuki Yamane
  • Seiji Takeda
  • Daiju Nakano
  • Gouhei Tanaka
  • Ryosho Nakane
  • Shigeru Nakagawa
  • Akira Hirose
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9947)

Abstract

We investigate reservoir computing systems whose dynamics are at critical bifurcation points based on center manifold theorem. We take echo state networks as an example and show that the center manifold defines mapping of the input dynamics to higher dimensional space. We also show that the mapping by center manifolds can contribute to recognition of attractors of input dynamics. The implications for realization of reservoir computing as real physical systems are also discussed.

Keywords

Reservoir computing Echo state network Bifurcation phenomena Center manifold theory Physical reservoir 

References

  1. 1.
    Caluwaerts, K., et al.: The spectral radius remains a valid indicator of the echo state property for large reservoirs. In: IJCNN pp. 1–6 (2013)Google Scholar
  2. 2.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Heidelberg (1983)CrossRefMATHGoogle Scholar
  3. 3.
    Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Mori, H., Kuramoto, Y.: Dissipative Structures and Chaos. Springer, Heidelberg (2011)MATHGoogle Scholar
  5. 5.
    Pieroux, D., Mandel, P.: Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity. Phys. Rev. E 67, 056213 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Vandoorne, K., et al.: Toward optical signal processing using photonics reservoir computing. Opt. Express 16(15), 11182–11192 (2008)CrossRefGoogle Scholar
  7. 7.
    Yamane, T., Katayama, Y., Nakane, R., Tanaka, G., Nakano, D.: Wave-based reservoir computing by synchronization of coupled oscillators. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9491, pp. 198–205. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26555-1_23 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Toshiyuki Yamane
    • 1
  • Seiji Takeda
    • 1
  • Daiju Nakano
    • 1
  • Gouhei Tanaka
    • 2
  • Ryosho Nakane
    • 2
  • Shigeru Nakagawa
    • 1
  • Akira Hirose
    • 2
  1. 1.IBM Research - TokyoKawasakiJapan
  2. 2.Graduate School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations