Advertisement

Pathology, Genetics, and Molecular Biology of Soft Tissue Tumors

  • Vasiliki SiozopoulouEmail author
  • Patrick Pauwels
Chapter

Abstract

Pathology provides tissue diagnosis aiming in better treatment choices and eventually quality life for the patient. Though, to achieve a correct diagnosis requires a multidisciplinary approach. Nowadays, molecular analysis opens a new way in diagnosing and classifying soft tissue tumors. The impact of molecular characterization of soft tissue tumors is still growing and is now an integrated part in the diagnosis of these neoplasms.

Keywords

Synovial Sarcoma Soft Tissue Tumor Malignant Peripheral Nerve Sheath Tumor Solitary Fibrous Tumor Epithelioid Sarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7CrossRefPubMedGoogle Scholar
  2. 2.
    Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (2013) WHO classification tumours of soft tissue and bone. IARC Press, LyonGoogle Scholar
  3. 3.
    Coindre JM (2006) Grading of soft tissue sarcomas: review and update. Arch Pathol Lab Med 30(10):1448–1453Google Scholar
  4. 4.
    Coindre JM, Terrier P, Guillou L, Le Doussal V, Collin F, Ranchère D, Sastre X, Vilain MO, Bonichon F, N’Guyen Bui B (2001) Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas: a study of 1240 patients from the French Federation of Cancer Centers Sarcoma Group. Cancer 91(10):1914–1926CrossRefPubMedGoogle Scholar
  5. 5.
    Gaynor JJ, Tan CC, Casper ES, Collin CF, Friedrich C, Shiu M, Hajdu SI, Brennan MF (1992) Refinement of clinicopathologic staging for localized soft tissue sarcoma of the extremity: a study of 423 adults. J Clin Oncol 10(8):1317–1329CrossRefPubMedGoogle Scholar
  6. 6.
    Heise HW, Myers MH, Russell WO, Suit HD, Enzinger FM, Edmonson JH, Cohen J, Martin RG, Miller WT, Hajdu SI (1986) Recurrence-free survival time for surgically treated soft tissue sarcoma patients: multivariate analysis of five prognostic factors. Cancer 57(1):172–177CrossRefPubMedGoogle Scholar
  7. 7.
    Markhede G, Angervall L, Stener B (1982) A multivariate analysis of the prognosis after surgical treatment of malignant soft-tissue tumors. Cancer 49(8):1721–1733CrossRefPubMedGoogle Scholar
  8. 8.
    Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF (1996) Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol 14(5):1679–1689CrossRefPubMedGoogle Scholar
  9. 9.
    Saddegh MK, Lindholm J, Lundberg A, Nilsonne U, Kreicbergs A (1992) Staging of soft-tissue sarcomas: prognostic analysis of clinical and pathological features. J Bone Joint Surg Br 74(4):495–500PubMedGoogle Scholar
  10. 10.
    Zagars GK, Ballo MT, Pisters PW, Pollock RE, Patel SR, Benjamin RS, Evans HL (2003) Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: an analysis of 1225 patients. Cancer 97(10):2530–2543CrossRefPubMedGoogle Scholar
  11. 11.
    Aboulafia AJ (2008) Biopsy. In: Schwartz HS (ed) Orthopaedic knowledge update: musculoskeletal tumors 2. AAOS, Rosemont, pp 3–11Google Scholar
  12. 12.
    Kasraeian S, Allison DC, Ahlmann ER, Fedenko AN, Menendez LR (2010) A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses. Clin Orthop Relat Res 468(11):2992–3002CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rougraff BT, Aboulafia A, Biermann JS, Healey J (2009) Biopsy of soft tissue masses: evidence-based medicine for the Musculoskeletal Tumor Society. Clin Orthop Relat Res 467:2783–2791CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bell WC, Young ES, Billings PE, Grizzle WE (2008) The efficient operation of the surgical pathology gross room. Biotech Histochem 83(2):71–82CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Start RD, Layton CM, Cross SS, Smith JH (1992) Reassessment of the rate of fixative diffusion. J Clin Pathol 45(12):1120–1121CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Werner M, Chott A, Fabiano A, Battifora H (2000) Effect of formalin tissue fixation and processing on immunohistochemistry. Am J Surg Pathol 24(7):1016–1019CrossRefPubMedGoogle Scholar
  17. 17.
    Pelstring RJ, Allred DC, Esther RJ, Lampkin SR, Banks PM (1991) Differential antigen preservation during tissue autolysis. Hum Pathol 22:237–241CrossRefPubMedGoogle Scholar
  18. 18.
    Cross SS, Start RD, Smith JHF (1990) Does delay in fixation affect the number of mitotic figures in processed tissue? J Clin Pathol 43:597–599CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Start RD, Flynn MS, Cross SS, Rogers K, Smith JHF (1991) Is the grading of breast carcinoma affected by delay in fixation? Virchows Arch (Pathol Anat) 419:475–477CrossRefGoogle Scholar
  20. 20.
    Nakazawa J, Rosen P, Lowe N, Lattes R (1968) Frozen section diagnosis experience in 3000 cases. Am J Clin Pathol 49:41–51CrossRefPubMedGoogle Scholar
  21. 21.
    Bell WC, Sexton KC, Grizzle WE (2009) How to efficiently obtain human tissues to support specific biomedical research projects. Cancer Epidemiol Biomarkers Prev 18(6):1676–1679CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang J, Qi R, Quackenbush J, Dauway E, Lazaridis E, Yeatman T (2001) Effects of ischemia on gene expression. J Surg Res 99:222–227CrossRefPubMedGoogle Scholar
  23. 23.
    Jewell SD, Srinivasan M, McCart LM, Williams N, Grizzle WH, LiVolsi V, MacLennan G, Sedmak DD (2002) Analysis of the molecular quality of human tissues: an experience from the Cooperative Human Tissue Network. Am J Clin Pathol 118:733–741CrossRefPubMedGoogle Scholar
  24. 24.
    Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK, Spangenberg J, Zornig C, Juhl HH, David KA (2004) Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques 36:1030–1037PubMedGoogle Scholar
  25. 25.
    Bauminger E, Cohen S, Nowik I, Ofer S, Yariv J (1983) Dynamics of heme iron in crystals of metmyoglobin and deoxymyoglobin. Proc Natl Acad Sci 80:736–740CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337:754–756CrossRefPubMedGoogle Scholar
  27. 27.
    Hartmann H, Parak F, Steigemann W, Petsko G, Ponzi DR, Frauenfelder H (1982) Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci 79:4967–4971CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Loncharich RJ, Brooks BR (1990) Temperature dependence of dynamics of hydrated myoglobin: comparison of force field calculations with neutron scattering data. J Mol Biol 215:439–455CrossRefPubMedGoogle Scholar
  29. 29.
    More N, Daniel RM, Petach HH (1995) The effect of low temperatures on enzyme activity. Biochem J 305:17–20CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease a loses function below the dynamical transition at 220 K. Nature 357:423–424CrossRefPubMedGoogle Scholar
  31. 31.
    Tilton RF Jr, Dewan JC, Petsko GA (1992) Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31:2469–2481CrossRefPubMedGoogle Scholar
  32. 32.
    Hubel A, Spindler R, Skubitz AP (2014) Storage of human biospecimens: selection of the optimal storage temperature. Biopreserv Biobank 12(3):165–175CrossRefPubMedGoogle Scholar
  33. 33.
    Binh MB, Sastre-Garau X, Guillou L, de Pinieux G, Terrier P, Lagacé R, Aurias A, Hostein I, Coindre JM (2005) MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol 29(10):1340–1347CrossRefPubMedGoogle Scholar
  34. 34.
    Bode-Lesniewska B, Zhao J, Speel EJ, Biraima AM, Turina M, Komminoth P, Heitz PU (2001) Gains of 12q13-14 and overexpression of mdm2 are frequent findings in intimal sarcomas of the pulmonary artery. Virchows Arch 438(1):57–65CrossRefPubMedGoogle Scholar
  35. 35.
    Schaefer IM, Fletcher CD, Hornick JL (2016) Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol 29:4–13CrossRefPubMedGoogle Scholar
  36. 36.
    Hornick JL (2014) Novel uses of immunohistochemistry in the diagnosis and classification of soft tissue tumors. Mod Pathol 27:47–63CrossRefGoogle Scholar
  37. 37.
    Bridge JA (2014) The role of cytogenetics and molecular diagnostics in the diagnosis of soft-tissue tumors. Mod Pathol 27(Suppl 1):S80–S97CrossRefPubMedGoogle Scholar
  38. 38.
    Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C, Thiery JP, Olschwang S, Philip I, Berger MP et al (1988) Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32(2):229–238CrossRefPubMedGoogle Scholar
  39. 39.
    Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT (1994) A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 6(2):146–151CrossRefPubMedGoogle Scholar
  40. 40.
    Sankar S, Lessnick SL (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet 204(7):351–365CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Panagopoulos I, Höglund M, Mertens F, Mandahl N, Mitelman F, Aman P (1996) Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene 12(3):489–494PubMedGoogle Scholar
  42. 42.
    Coindre JM, Pédeutour F, Aurias A (2010) Well-differentiated and dedifferentiated liposarcomas. Virchows Arch 456(2):167–179CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang H, Macdonald WD, Erickson-Johnson M, Wang X, Jenkins RB, Oliveira AM (2007) Cytogenetic and molecular cytogenetic findings of intimal sarcoma. Cancer Genet Cytogenet 179(2):146–149CrossRefPubMedGoogle Scholar
  44. 44.
    Rubin BP, Heinrich MC (2015) Genotyping and immunohistochemistry of gastrointestinal stromal tumors: an update. Semin Diagn Pathol 32(5):392–399CrossRefPubMedGoogle Scholar
  45. 45.
    Antonescu CR (2006) The role of genetic testing in soft tissue sarcoma. Histopathology 48:13–21CrossRefPubMedGoogle Scholar
  46. 46.
    Helman LJ, Meltzer P (2003) Mechanisms of sarcoma development. Nat Rev Cancer 3(9):685–694CrossRefPubMedGoogle Scholar
  47. 47.
    Norberg SM, Movva S (2015) Role of genetic and molecular profiling in sarcomas. Curr Treat Options Oncol 16(5):24CrossRefPubMedGoogle Scholar
  48. 48.
    Quesada J, Amato R (2012) The molecular biology of soft-tissue sarcomas and current trends in therapy. Sarcoma 2012:849456CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Davis RJ, D’Cruz CM, Lovell MA, Biegel JA, Barr FG (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54:2869–2872PubMedGoogle Scholar
  50. 50.
    Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, Bridge JA, Crist WM, Triche TJ, Barr FG (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20:2672–2679CrossRefPubMedGoogle Scholar
  51. 51.
    Parham DM, Ellison DA (2006) Rhabdomyosarcomas in adults and children: an update. Arch Pathol Lab Med 130:1454–1465PubMedGoogle Scholar
  52. 52.
    Raney RB, Anderson JR, Barr FG, Donaldson SS, Pappo AS, Qualman SJ, Wiener ES, Maurer HM, Crist WM (2001) Rhabdomyosarcoma and undifferentiated sarcoma in the first two decades of life: a selective review of intergroup rhabdomyosarcoma study group experience and rationale for Intergroup Rhabdomyosarcoma Study V. J Pediatr Hematol Oncol 23:215–220CrossRefPubMedGoogle Scholar
  53. 53.
    de Alava E, Kawai A, Healey JH, Fligman I, Meyers PA, Huvos AG, Gerald WL, Jhanwar SC, Argani P, Antonescu CR, Pardo-Mindan FJ, Ginsberg J, Womer R, Lawlor ER, Wunder J, Andrulis I, Sorensen PH, Barr FG, Ladanyi M (1998) EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 16(4):1248–1255CrossRefPubMedGoogle Scholar
  54. 54.
    Rutkowski P, Wozniak A, Switaj T (2011) Advances in molecular characterization and targeted therapy in dermatofibrosarcoma protuberans. Sarcoma 2011:959132CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Costa J, Wesley RA, Glatstein E, Rosenberg SA (1984) The grading of soft tissue sarcomas: results of a clinicopathological correlation in a series of 163 cases. Cancer 53:530–541CrossRefPubMedGoogle Scholar
  56. 56.
    Trojani M, Contesso G, Coindre JM, Rouesse J, Bui NB, de Mascarel A, Goussot JF, David M, Bonichon F, Lagarde C (1984) Soft tissue sarcomas of adults: study of pathological prognostic variables and definition of histopathological grading system. Int J Cancer 33:37–42CrossRefPubMedGoogle Scholar
  57. 57.
    Guillou L, Coindre JM, Bonichon F, Nguyen BB, Terrier P, Collin F, Vilain MO, Mandard AM, Le Doussal V, Leroux A, Jacquemier J, Duplay H, Sastre-Garau X, Costa J (1997) Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J Clin Oncol 15(1):350–362CrossRefPubMedGoogle Scholar
  58. 58.
    Deyrup AT, Weiss SW (2006) Grading of soft tissue sarcomas: the challenge of providing precise information in an imprecise world. Histopathology 48(1):42–50CrossRefPubMedGoogle Scholar
  59. 59.
    Hoeber I, Spillane AJ, Fisher C, Thomas JM (2001) Accuracy of biopsy techniques for limb and limb girdle soft tissue tumors. Ann Surg Oncol 8(1):80–87CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University Hospital of Antwerp (UZA)EdegemBelgium
  2. 2.Center for Oncological Research (CORE)University of AntwerpEdegemBelgium

Personalised recommendations