Skip to main content

The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9949)

Abstract

Evolutionary algorithms have been used in many ways to generate digital art. We study how evolutionary processes are used for evolutionary art and present a new approach to the transition of images. Our main idea is to define evolutionary processes for digital image transition, combining different variants of mutation and evolutionary mechanisms. We introduce box and strip mutation operators which are specifically designed for image transition. Our experimental results show that the process of an evolutionary algorithm in combination with these mutation operators can be used as a valuable way to produce unique generative art.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-46675-0_29
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-46675-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    Images and videos are available at https://evolutionary-art.blogspot.com.

References

  1. Bentley, P., Corne, D.: Creative Evolutionary Systems. Evolutionary Computation Series. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  2. McCormack, J., d’Inverno, M. (eds.): Computers and Creativity. Springer, Heidelberg (2012)

    Google Scholar 

  3. Dawkins, R.: The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. National Bestseller. Science. Norton, New York (1986)

    Google Scholar 

  4. Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    CrossRef  MATH  Google Scholar 

  5. Sims, K.: Artificial evolution for computer graphics. In: Thomas, J.J. (eds.) Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1991, pp. 319–328. ACM (1991)

    Google Scholar 

  6. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press Inc., Orlando (1994)

    MATH  Google Scholar 

  7. Unemi, T.: Sbart4 for an automatic evolutionary art. In: Proceedings of the IEEECongress on Evolutionary Computation, CEC 2012, Brisbane, Australia, June 10-15, 2012, pp. 1–8. IEEE (2012)

    Google Scholar 

  8. Hart, D.: Toward greater artistic control for interactive evolution of images and animation. In: Finnegan, J.W., Pfister, H. (eds.) 33 International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2006. ACM 2(2006)

    Google Scholar 

  9. Champandard, A.J.: Semantic style transfer and turning two-bit doodles into fine artworks. CoRR abs/1603.01768 (2016)

    Google Scholar 

  10. Li, C., Wand, M.: Combining Markov random fields and convolutional neural networks for image synthesis. CoRR abs/1601.04589 (2016)

    Google Scholar 

  11. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator. Evol. Comput. 18(1), 1–26 (2010)

    CrossRef  Google Scholar 

  13. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

    CrossRef  MATH  Google Scholar 

  15. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127(1), 57–85 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Neumann, A., Alexander, B., Neumann, F. (2016). The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9949. Springer, Cham. https://doi.org/10.1007/978-3-319-46675-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46675-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46674-3

  • Online ISBN: 978-3-319-46675-0

  • eBook Packages: Computer ScienceComputer Science (R0)