New Tools for Old Problems: Magnetic Stimulation to Study (and Help) the Brain

  • Casto Rivadulla
  • Jordi Aguilá-Macías
  • Sandra Prieto-Soler
  • Juan Aguilar
  • Javier CudeiroEmail author
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 15)


Magnetic stimulation techniques, either repetitive TMS (rTMS) or Static Magnetic Fields, allow to modulate brain activity through the skull in a non invasive and painless way. When rTMS is used, low frequencies of stimulation (≤1 Hz) produce inhibitory changes in excitability whilst higher rates (above 5 Hz) appear to produce increasing excitability Pascual-Leone et al. (J. Clin. Neurophysiol. 15(4):333–343, 1998) [1]. By using two different experimental approaches (anaestethetized cat and monkey) to study the early visual system, we show here that rTMS applied at low and high frequency has opposing effects on the EEG. These effects can be detected locally but also in a wider spatial extent. Further, we report data supporting the suppressive nature of the static magnetic stimulation. It supports the idea that static magnets could be used for different purposes ranging from experimental studies to clinical applications.


Transcranial Magnetic Stimulation Static Magnetic Field Vecuronium Bromide NdFeB Magnet Delta Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the MINECO (Spain), BFU 2013-45343-P and Xunta de Galicia (Conselleria de Educación 2007/000140-0; Ayudas Grupos Consolidados).


  1. 1.
    A. Pascual-Leone, J.M. Tormos, J. Keenan, F. Tarazona, C. Cañete, M.D. Catalá, Study and modulation of human cortical excitability with transcranial magnetic stimulation. J. Clin. Neurophysiol. 15(4), 333–343 (1998)CrossRefGoogle Scholar
  2. 2.
    M. Kobayashi, A. Pascual-Leone, Transcranial magnetic stimulation in neurology. Lancet Neurol. 2(3), 145–156 (2003)CrossRefGoogle Scholar
  3. 3.
    J.P. Lefaucheur et al., Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125(11), 2150–2206 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Ortuño, K.L. Grieve, R. Cao, J. Cudeiro, C. Rivadulla, Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback. Front. Behav. Neurosci. 30(8), 198 (2014)Google Scholar
  5. 5.
    J. Aguila, J. Cudeiro, C. Rivadulla, Effects of static magnetic fields on the visual cortex: reversible visual deficits and reduction of neuronal activity. Cereb. Cortex 26(2), 628–638 (2016)Google Scholar
  6. 6.
    C. de Labra, C. Rivadulla, K. Grieve, J. Mariño, N. Espinosa, J. Cudeiro, Changes in visual responses in the feline dLGN: selective thalamic suppression induced by transcranial magnetic stimulation of V1. Cereb. Cortex 17(6), 1376–1385 (2007)CrossRefGoogle Scholar
  7. 7.
    C. Rivadulla, L.M. Martínez, C. Varela, J. Cudeiro, Completing the corticofugal loop: a visual role for the corticogeniculate type 1 metabotropic glutamate receptor. J. Neurosci. 22(7), 2956–2962 (2002)Google Scholar
  8. 8.
    C. Rivadulla, G. Foffani, A. Oliviero, Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex. Neuromodulation 17(5), 438–441 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Casto Rivadulla
    • 1
  • Jordi Aguilá-Macías
    • 1
  • Sandra Prieto-Soler
    • 1
  • Juan Aguilar
    • 2
  • Javier Cudeiro
    • 1
    • 3
    Email author
  1. 1.Faculty of Health Sciences, Neuroscience and Motor Control Group (NEUROcom)University of a Coruña, INIBICCoruñaSpain
  2. 2.Hospital Nacional de ParapléjicosServicio de Salud de Castilla-La ManchaToledoSpain
  3. 3.Centro de Estimulacion Cerebral de GaliciaUniversity of a CoruñaCoruñaSpain

Personalised recommendations