Advertisement

Analysis and Quantification of Upper-Limb Movement in Motor Rehabilitation After Stroke

  • R. Mariana SilvaEmail author
  • Emanuel Sousa
  • Pedro Fonseca
  • Ana Rita Pinheiro
  • Cláudia Silva
  • Miguel V. Correia
  • Sandra Mouta
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 15)

Abstract

It is extremely difficult to reduce the relations between the several body parts that perform human motion to a simplified set of features. Therefore, the study of the upper-limb functionality is still in development, partly due to the wider range of actions and strategies for motor execution. This, in turn, leads to inconsistent upper-limb movement parameterization. We propose a methodology to assess and quantify the upper-limb motor execution. Extracting key variables from different sources, we intended to quantify healthy upper-limb movement and use these parameters to quantify motor execution during rehabilitation after stroke. In order to do so, we designed an experimental setup defining a workspace for the execution of the action recording kinematic data. Results reveal an effect of object and instruction on the timing of upper-limb movement, indicating that the spatiotemporal analysis of kinematic data can be used as a quantification parameter for motor rehabilitation stages and methods.

Notes

Acknowledgments

This work was supported by Fundação Bial (Grant 77/12; Grant 143/14).

References

  1. 1.
    J.F. Soechting, F. Lacquaniti, Invariant characteristics of a pointing movement in man. J. Neurosci. 1(7), 710720 (1981)Google Scholar
  2. 2.
    C.Y. Wu, C.A. Trombly, K.C. Lin, L. Tickle-Degnen, A kinematic study of contextual effects on reaching performance in persons with and without stroke: influences of object availability. Arch. Phys. Med. Rehabil. 81(1), 95–101 (2000)CrossRefGoogle Scholar
  3. 3.
    N. Yang, M. Zhang, C. Huang, D. Jin, Motion quality evaluation of upper limb target-reaching movements. Med. Eng. Phys. 24(2), 115–120 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Rizzolatti, L. Fogassi, V. Gallese, Neuropsysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001)CrossRefGoogle Scholar
  5. 5.
    E. Sousa, T. Malheiro, E. Bicho, W. Erlhagen, J. Santos, A.F. Pereira, MUVTIME: a multivariate time series visualizer for behavioral science, in 7th International Conference on Information Visualization Theory and Applications (IVAPP), Vol. 2. (Rome, 2016), pp. 1–12Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. Mariana Silva
    • 1
    Email author
  • Emanuel Sousa
    • 1
  • Pedro Fonseca
    • 2
  • Ana Rita Pinheiro
    • 3
  • Cláudia Silva
    • 3
  • Miguel V. Correia
    • 4
  • Sandra Mouta
    • 1
  1. 1.Centre for Computer GraphicsGuimarãesPortugal
  2. 2.Laboratório de Biomecânica do PortoPortoPortugal
  3. 3.Escola Superior de Tecnologia da Saúde do Porto – Instituto Politécnico do Porto/Centro de Estudos do Movimento e Actividade HumanaPortoPortugal
  4. 4.INESC TEC and Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations