Advertisement

Pseudo-Online Detection of Intention of Pedaling Start Cycle Through EEG Signals

  • M. Rodríguez-UgarteEmail author
  • Á. Costa
  • E. Iáñez
  • A. Úbeda
  • J. M. Azorín
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 15)

Abstract

This work studied different electrode configurations and processing windows for detecting the intention of pedaling initiation. Furthermore, data were pseudo-online analyzed. The main goal was to find alterations in the mu and beta frequency bands where event-related synchronization and desynchronization (ERS/ERD) is produced. The results show an improvement using time before and after the movement onset rather than until the movement onset.

Notes

Acknowledgments

The authors wish to thank Neuroelectrics for lending the equipment Enobio 32 used in the experiments.

References

  1. 1.
    A.J. del-Ama, A. Gil-Agudo, J.L. Pons, J.C. Moreno, Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton, J. Neuroeng. Rehabil. 11(1), 1 (2014). BioMed CentralGoogle Scholar
  2. 2.
    S.K. Banala, S.K. Agrawal, J.P. Scholz, Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients, in ICORR 2007. IEEE 10th International Conference on En Rehabilitation Robotics, 2007, (IEEE, 2007), pp. 401–407Google Scholar
  3. 3.
    M. Severens, B. Nienhuis, P. Desain, J. Duysens, Feasibility of measuring event Related Desynchronization with electroencephalography during walking, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2012), pp. 2764–2767Google Scholar
  4. 4.
    J. Wagner, T. Solis-Escalante, P. Grieshofer, C. Neuper, G. M üller-Putz, R. Scherer, Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able bodied subjects in. Neuroimage 63(3), 1203–1211 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Pfurtschellera, F.H. Lopes da Silvab, Event-Related EEG/MEG synchronization and desynchronization: basic principles in. Clin. Neurophysiol. 110(11), 1842–1857 (1999)CrossRefGoogle Scholar
  6. 6.
    E. Hortal, and A. Úbeda, and E. Iáñez,and E. Fernández, and J.M. Azorín, Using EEG signals to detect the intention of walking initiation and stop, in Artificial Computation in Biology and Medicine, (Springer, 2015), pp. 278–287Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Rodríguez-Ugarte
    • 1
    Email author
  • Á. Costa
    • 1
  • E. Iáñez
    • 1
  • A. Úbeda
    • 1
  • J. M. Azorín
    • 1
  1. 1.Brain-Machine Interface Systems LabMiguel Hernández University of EcheElcheSpain

Personalised recommendations