Advertisement

How Do Interconnected Neuronal Networks Adjust to External Stimulation: Parametric Studies of DBS-FMRI

  • Javier Moya
  • Daniel Torres
  • David Moratal
  • Santiago CanalsEmail author
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 15)

Abstract

The use of intracranial electrical microstimulation for the treatment of neurologic and psychiatric disorders, as well as in neural prosthesis, has experienced an exponential growth in the last decade. Despite this spectacular expansion and the great promise of some applications, little is known about the precise neurobiological mechanisms underlying its actions, the rules governing activity propagation during stimulation and the probable roles obeyed by short and long-term plasticity processes in the synapses being activated. We combine deep brain electric microstimulation and functional magnetic resonance imaging (fMRI) to investigate local and brain-wide functional networks activated by different sets of stimulation parameters that produced distinct behavioral effects.

Keywords

Transcranial Magnetic Stimulation Deep Brain Stimulation Functional Connectivity Brain Network Stimulation Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Begoña Fernández for her excellent technical assistance.

References

  1. 1.
    J. Olds, P. Milner, Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comput. Physiol. Psychol. 47(6), 419–427 (1954)CrossRefGoogle Scholar
  2. 2.
    W. Penfield, E. Boldrey, Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937)CrossRefGoogle Scholar
  3. 3.
    E.J. Tehovnik, K.M. Lee, The dorsomedial frontal cortex of the rhesus monkey. Topographic representation of saccades evoked by electrical stimulation. Exp. Brain Res. 96, 430–442 (1993)CrossRefGoogle Scholar
  4. 4.
    R. Romo, A. Hernádez, A. Zainos, E. Salinas, Somatosensory discrimination based on cortical microstimulation. Nature 392, 387–390 (1998)CrossRefGoogle Scholar
  5. 5.
    P. Limousin, P. Pollak, A. Benazzouz, D. Hoffmann, J.F. Le Bas, E. Broussolle, J.E. Perret, A.L. Benabid, Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345, 91–95 (1995)CrossRefGoogle Scholar
  6. 6.
    J.A. Bierer, J.C. Middlebrooks, Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. J. Neurophysiol. 87, 478–492 (2002)Google Scholar
  7. 7.
    J.C. Middlebrooks, J.A. Bierer, Auditory cortical images of cochlear-implant stimuli: coding of stimulus channel and current level. J. Neurophysiol. 87, 493–507 (2002)Google Scholar
  8. 8.
    E.J. Tehovnik, A.S. Tolias, F. Sultan, W.M. Slocum, N.K. Logothetis, Direct and indirect activation of cortical neurons by electrical microstimulation. J. Neurophysiol. 96(2), 512–521 (2006)CrossRefGoogle Scholar
  9. 9.
    S. Canals, M. Beyerlein, H. Merkle, N.K. Logothetis, Functional MRI evidence for LTP-induced neural network reorganization. Curr. Biol. 19(5), 398–403 (2009)CrossRefGoogle Scholar
  10. 10.
    A. Moreno, R.G. Morris, S. Canals, Frequency-dependent gating of hippocampal-neocortical interactions. Cereb. Cortex 26(5), 2105–2114 (2016)CrossRefGoogle Scholar
  11. 11.
    E. Alvarez-Salvado, V. Pallarés, A. Moreno, S. Canals, Functional MRI of long-term potentiation: imaging network plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369(1633), 20130152 (2013)CrossRefGoogle Scholar
  12. 12.
    N.K. Logothetis, M. Augath, Y. Murayama, A. Rauch, F. Sultan, J. Goense, A. Oeltermann, H. Merkle, The effects of electrical microstimulation on cortical signal propagation. Nat. Neurosci. 13(10), 1283–1291 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Reis, Y. Hu, A. Babino, J.A. Andrade, S. Canals, M. Sigman, H. Makse, Avoiding catastrophic failure in correlated networks of networks. Nat. Phys. 10, 762 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Kuhn, D. Lenartz, W. Huff, S. Lee, A. Koulousakis, J. Klosterkoetter, V. Sturm, Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J. Neurol. Neurosurg. Psychiatry 78, 1152–1153 (2007)CrossRefGoogle Scholar
  15. 15.
    F.M. Vassoler, S.L. White, T.J. Hopkins, L.A. Guercio, J. Espallergues, O. Berton, H.D. Schmidt, R.C. Pierce, Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation. J. Neurosci. 33(36), 14446–14454 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Javier Moya
    • 1
  • Daniel Torres
    • 2
  • David Moratal
    • 1
  • Santiago Canals
    • 2
    Email author
  1. 1.Center for Biomaterials and Tissue EngineeringUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Instituto de NeurocienciasConsejo Superior de Investigaciones Científicas and Universidad Miguel HernándezSant Joan d’AlacantSpain

Personalised recommendations