Exploring the Ethical Landscape of Robot-Assisted Search and Rescue

  • Maaike Harbers
  • Joachim de Greeff
  • Ivana Kruijff-Korbayová
  • Mark A. Neerincx
  • Koen V. Hindriks
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 84)

Abstract

As robots are increasingly used in Search and Rescue (SAR) missions, it becomes highly relevant to study how SAR robots can be developed and deployed in a responsible way. In contrast to some other robot application domains, e.g. military and healthcare, the ethics of robot-assisted SAR are relatively under examined. This paper aims to fill this gap by assessing and analyzing important values and value tensions of stakeholders of SAR robots. The paper describes the outcomes of several Value Assessment workshops that were conducted with rescue workers, in the context of a European research project on robot-assisted SAR (the TRADR project). The workshop outcomes are analyzed and key ethical concerns and dilemmas are identified and discussed. Several recommendations for future ethics research leading to responsible development and deployment of SAR robots are provided.

Keywords

Roboethics Search and rescue robotics Human-robot interaction Ethical concerns Values Value sensitive design 

References

  1. Arkin R (2009) Governing lethal behavior in autonomous robots. CRC PressGoogle Scholar
  2. Birk A, Carpin S (2006) Rescue robotics—a crucial milestone on the road to autonomous systems. Adv Robot 20(5):595–605CrossRefGoogle Scholar
  3. Bos J, Mol E, Visser B, Frings-Dresen MH (2004) The physical demands upon (dutch) fire-fighters in relation to the maximum acceptable energetic workload. Ergonomics 47(4):446–460CrossRefGoogle Scholar
  4. Butter M, Rensma A, Boxsel Jv, Kalisingh S, Schoone M, Leis M, Gelderblom G, Cremers G, Wilt Md, Kortekaas W, et al (2008) Robotics for healthcare: final reportGoogle Scholar
  5. Chang CM, Lee LC, Connor KM, Davidson JR, Jeffries K, Lai TJ (2003) Posttraumatic distress and coping strategies among rescue workers after an earthquake. J Nervous Ment Dis 191(6):391–398Google Scholar
  6. Decker M (2008) Caregiving robots and ethical reflection: the perspective of interdisciplinary technology assessment. Ai Soc 22(3):315–330CrossRefGoogle Scholar
  7. Docherty BL (2012) Losing Humanity: the case against killer robots. Human Rights WatchGoogle Scholar
  8. Fincannon T, Barnes LE, Murphy RR, Riddle DL (2004) Evidence of the need for social intelligence in rescue robots. In: IEEE/RSJ international conference on Intelligent Robots and Systems (IROS), vol 2. IEEE, pp 1089–1095Google Scholar
  9. Friedman B, Hendry D (2012) The envisioning cards: a toolkit for catalyzing humanistic and technical imaginations. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 1145–1148Google Scholar
  10. Friedman B, Kahn PH Jr, Borning A, Huldtgren A (2013) Value sensitive design and information systems. In: Early engagement and new technologies: opening up the laboratory. Springer, pp 55–95Google Scholar
  11. Fullerton CS, McCarroll JE, Ursano RJ, Wright KM (1992) Psychological responses of rescue workers: fire fighters and trauma. Am J Orthopsychiatry 62(3):371CrossRefGoogle Scholar
  12. Geale SK (2012) The ethics of disaster management. Disaster Prev Manage Int J 21(4):445–462CrossRefGoogle Scholar
  13. Harbers M, Detweiler C, Neerincx MA (2015) Embedding stakeholder values in the requirements engineering process. In: Requirements engineering: foundation for software quality. Springer,pp 318–332Google Scholar
  14. Ingram B, Jones D, Lewis A, Richards M, Rich C, Schachterle L (2010) A code of ethics for robotics engineers. In: 2010 5th ACM/IEEE international conference on Human-Robot Interaction (HRI), pp 103–104Google Scholar
  15. Kruijff GJM, Janíček M (2011) Using doctrines for human-robot collaboration to guide ethical behavior. In: AAAI fall symposium: robot-human teamwork in dynamic adverse environmentGoogle Scholar
  16. Kruijff-Korbayová I, Colas F, Gianni M, Pirri F, de Greeff J, Hindriks K, Neerincx M, Ögren P, Svoboda T, Worst R (2015) TRADR project: long-term human-robot teaming for robot assisted disaster response. KI - Künstliche Intelligenz, pp 1–9Google Scholar
  17. Łichocki P, Billard A, Kahn PH Jr (2011) The ethical landscape of robotics. IEEE Robot Autom Mag 18(1):39–50CrossRefGoogle Scholar
  18. Lin P, Abney K, Bekey GA (2011) Robot ethics: the ethical and social implications of robotics. MIT PressGoogle Scholar
  19. Lin P, Bekey GA, Abney K (2009) Robots in war: issues of risk and ethicsGoogle Scholar
  20. Lucas GR Jr (2011) Industrial challenges of military robotics. J Militar Ethics 10(4):274–295CrossRefMathSciNetGoogle Scholar
  21. Malle BF, Scheutz M, Arnold T, Voiklis J, Cusimano C (2015) Sacrifice one for the good of many?: People apply different moral norms to human and robot agents. In: Proceedings of the tenth annual ACM/IEEE international conference on Human-Robot Interaction, HRI ’15. ACM, New York, NY, USA, pp 117–124Google Scholar
  22. Miller JK, Friedman B, Jancke G, Gill B (2007) Value tensions in design: the value sensitive design, development, and appropriation of a corporation’s groupware system. In: Proceedings of the 2007 international ACM conference on supporting group work. ACM, pp 281–290Google Scholar
  23. Murphy RR (2004) Human-robot interaction in rescue robotics. IEEE Trans Syst Man Cybern Part C 34(2):138–153CrossRefGoogle Scholar
  24. Murphy RR (2014) Disaster robotics. MIT PressGoogle Scholar
  25. Murphy RR, Woods DD (2009) Beyond asimov: the three laws of responsible robotics. IEEE Intell Syst 24(4):14–20CrossRefGoogle Scholar
  26. Murphy RR, Dreger KL, Newsome S, Rodocker J, Slaughter B, Smith R, Steimle E, Kimura T, Makabe K, Kon K, Mizumoto H, Hatayama M, Matsuno F, Tadokoro S, Kawase O (2012) Marine heterogeneous multirobot systems at the great eastern japan tsunami recovery. J Field Robot 29(5):819–831CrossRefGoogle Scholar
  27. Noorman M, Johnson D (2014) Negotiating autonomy and responsibility in military robots. Ethics Inf Technol 16(1):51–62CrossRefGoogle Scholar
  28. Okada Y, Nagatani K, Yoshida K, Tadokoro S, Yoshida T, Koyanagi E (2011) Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning. J Field Robot 28(6):875–893CrossRefGoogle Scholar
  29. Prieur M (2012) Council of Europe. European and Mediterranean Major Hazards Agreement (EUR-OPA). http://www.preventionweb.net/english/professional/publications/v.php?id=26384. Accessed 17 June 2015
  30. Riek LD, Howard D (2014) A code of ethics for the human-robot interaction profession. Proceedings of We RobotGoogle Scholar
  31. Sandin P (2009) Firefighting ethics: principlism for burning issues. Ethical Perspect 16(2):225–251CrossRefGoogle Scholar
  32. Sharkey A, Sharkey N (2012) Granny and the robots: ethical issues in robot care for the elderly. Ethics Inf Technol 14(1):27–40CrossRefGoogle Scholar
  33. Sparrow R (2007) Killer robots. J Appl Philos 24(1):62–77CrossRefGoogle Scholar
  34. Veruggio G (2006) The euron roboethics roadmap. In: 2006 6th IEEE-RAS international conference on humanoid robots. IEEE, pp 612–617Google Scholar
  35. van Wynsberghe A (2013) Designing robots for care: care centered value-sensitive design. Sci Eng Ethics 19(2):407–433CrossRefGoogle Scholar
  36. Wallach W, Allen C (2008) Moral machines: teaching robots right from wrong. Oxford University PressGoogle Scholar
  37. Zuzánek P, Zimmermann K, Hlavác V (2014) Accepted autonomy for search and rescue robotics. In: Modelling and simulation for autonomous systems: first international workshop, MESAS 2014, Rome, Italy, 5–6 May 2014, Revised Selected Papers, vol 8906. Springer, p 231Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maaike Harbers
    • 1
  • Joachim de Greeff
    • 1
  • Ivana Kruijff-Korbayová
    • 2
  • Mark A. Neerincx
    • 3
  • Koen V. Hindriks
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Language Technology LabDFKISaarbrueckenGermany
  3. 3.TNO Human Factors, Delft University of TechnologyDelftThe Netherlands

Personalised recommendations