Posture, Locomotion and Bipedality: The Case of the Gerenuk (Litocranius walleri)

  • Matt CartmillEmail author
  • Kaye Brown
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Most explanations for the origin of hominin bipedality cannot be comparatively tested, because there are no other striding bipeds among mammals. However, there are other mammals that stand bipedally for long periods of time. One such is the gerenuk (Litocranius walleri), an African gazelle that browses while standing bipedally, with extended hips and knees and a marked lumbar lordosis. Despite these behavioral resemblances to humans, Richter’s (1970) extensive comparative study of gerenuk anatomy found only one skeletal apomorphy specifically related to bipedality – namely, a reduction in the lumbar spinous processes, which permits that lumbar lordosis. Our data show that gerenuks lack two other features – an expanded cranial sector of the acetabular semilunar surface, and “wedging” of the lumbar vertebral bodies – that we had expected from their bipedal positional behavior. We infer that even prolonged and extensive postural bipedality results in little or no postcranial remodeling, unless selection favoring the maintenance of efficient quadrupedal locomotion is relaxed. This conclusion undercuts theories, such as Hunt’s (1994) “postural feeding hypothesis,” that portray early hominin postcranial apomorphies as having originated as adaptations to bipedal feeding postures rather than to bipedal locomotion.


Bipedality Locomotion Posture Litocranius Bovidae 



We are grateful to Judith M. Chupasko and the rest of the staff at the Harvard Museum of Comparative Zoology for their unflagging help and support. We also thank the staff of the American Museum of Natural History, the Natural History Museum (London), and the Miami MetroZoo for their help. This research was financed by grants from Boston University.


  1. Aiello, L., & Dean, C. (1990). An introduction to human evolutionary anatomy. London: Academic Press.Google Scholar
  2. Alexander, R. (2004). Bipedal animals, and their differences from humans. Journal of Anatomy, 204, 321–330.CrossRefGoogle Scholar
  3. Bodmer, R. E. (1990). Ungulate frugivores and the browser-grazer continuum. Oikos, 57, 319–325.CrossRefGoogle Scholar
  4. Cartmill, M., & Brown, K. (2014). Vertebral body area profiles in primates and other mammals. American Journal of Physical Anthropology, Supplement, 58, 91.Google Scholar
  5. Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 456–470.CrossRefGoogle Scholar
  6. Chan, L. K. (2014). The thoracic shape of hominoids. Anatomy Research International, 2014 (324850), 1–8.CrossRefGoogle Scholar
  7. Chaveau, A., & Arloing, S. (1890). The comparative anatomy of the domesticated animals (Trans. G. Fleming,). New York: Appleton.Google Scholar
  8. Davis, P. R. (1961). Human lower lumbar vertebrae: Some mechanical and osteological considerations. Journal of Anatomy, 95, 337–344.Google Scholar
  9. Demes, B., Larson, S. G., Stern, J. T., Jr., Jungers, W. L., Biknevicius, A. R., & Schmitt, D. (1994). The kinetics of primate quadrupedalism: “Hindlimb drive” reconsidered. Journal of Human Evolution, 6, 353–374.Google Scholar
  10. DeSilva, J. M. (2010). Revisiting the “midtarsal break”. American Journal of Physical Anthropology, 141, 245–258.Google Scholar
  11. DeSilva, J. M., & Lovejoy, C. O. (2009). Functional morphology of the ankle and the likelihood of climbing in early hominins. Proceedings of the National Academy of Sciences USA, 106, 6567–6572.CrossRefGoogle Scholar
  12. de Waal Malefijt, J., Slooff, T. J. J., Huiskes, R., de Laat, E. A. T., & Barentsz, J. O. (1988). Vascular changes following hip arthroplasty: The femur in goats studied with and without cementation. Acta Orthopedica Scandinavica, 59, 643–649.Google Scholar
  13. Elftman, H. O. (1929). Functional adaptations of the pelvis in marsupials. Bulletin of the American Museum of Natural History, 58, 189–232.Google Scholar
  14. Elliot, D. G. (1897). List of mammals obtained by the Field Columbian Museum East African expedition to Somali-land in 1896. Field Columbian Museum Publications (Zool.), 1, 109–155.Google Scholar
  15. Full, R. J., & Tu, M. S. (1991). Mechanics of a rapid running insect: Two-, four- and six-legged locomotion. Journal of Experimental Biology, 156, 215–231.Google Scholar
  16. Gentry, A. W. (1964). Skull characters of African gazelles. Annual Magazine of Natural History, 7, 353–382.CrossRefGoogle Scholar
  17. Goetsch, A. L., Gipson, T. A., Askar, A. R., & Puchala, R. (2010). Feeding behavior of goats. Journal of Animal Science, 88, 361–373.CrossRefGoogle Scholar
  18. Grand, T. I. (1997). How muscle mass is part of the fabric of behavioral ecology in East African bovids (Madoqua, Gazella, Damaliscus, Hippotragus). Anatomy and Embryology, 195, 375–386.CrossRefGoogle Scholar
  19. Hermanson, J. W., & MacFadden, B. J. (1996). Evolutionary and functional morphology of the knee in fossil and extant horses (Equidae). Journal of Vertebrate Paleontology, 16, 349–357.CrossRefGoogle Scholar
  20. Hodge, W. A., Fijan, R. S., Carlson, K. L., Burgess, R. G., Harris, W. H., & Mann, R. W. (1986). Contact pressures in the human hip joint measured in vivo. Proceedings of the National Academy of Sciences USA, 83, 2879–2883.CrossRefGoogle Scholar
  21. Hooker, J. J. (2007). Bipedal browsing adaptations of the unusual late Eocene–earliest Oligocene tylopod Anoplotherium (Artiodactyla, Mammalia). Zoological Journal of the Linnaean Society, 151, 609–659.CrossRefGoogle Scholar
  22. Hunt, K. D. (1994). The evolution of human bipedality: Ecology and functional morphology. Journal of Human Evolution, 26, 183–202.Google Scholar
  23. Hunt, K. D. (1996). The postural feeding hypothesis: An ecological model for the evolution of bipedalism. South African Journal of Science, 92, 77–90.Google Scholar
  24. Jungers, W. L. (1988). Relative joint size and hominoid locomotor adaptations with implications for the evolution of hominid bipedalism. Journal of Human Evolution, 17, 247–265.CrossRefGoogle Scholar
  25. Jungers, W. L. (1990). Problems and methods in reconstructing body size in fossil primates. In J. D. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 103–118). Cambridge: Cambridge University Press.Google Scholar
  26. Kimura, T. (2002). Primate limb bones and locomotor types in arboreal or terrestrial environments. Morphological Anthropology, 83, 201–219.Google Scholar
  27. Kingdon, J. (2004). The Kingdon pocket guide to African mammals. London: A&C Black.Google Scholar
  28. Köhler, M., & Moyà-Solà, S. (1997). Ape-like or hominid-like? The positional behavior of Oreopithecus bambolii reconsidered. Proceedings of the National Academy of Sciences USA, 94, 11747–11750.Google Scholar
  29. Latimer, B., & Ward, C. (1993). The thoracic and lumbar vertebrae. In A. Walker & R. Leakey (Eds.), The Nariokotome Homo erectus skeleton (pp. 266–293). Cambridge: Harvard University Press.CrossRefGoogle Scholar
  30. Leuthold, W. L. (1978). On the ecology of the gerenuk Litocranius walleri. Journal of Animal Ecology, 47, 561–580.CrossRefGoogle Scholar
  31. Leuthold, W. L., & Leuthold, B. M. (1973). Notes on the behaviour of two young antelopes reared in captivity. Zeitschrift für Tierzuchtung und Zuchtungsbiologie, 32, 418–424.Google Scholar
  32. Lovejoy, C. O., Suwa, G., Simpson, S. W., Matternes, J. H., & White, T. D. (2009). The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes. Science, 326, 100–106.Google Scholar
  33. Lydekker, R. (1908). The game animals of Africa. London: Rowland Ward.Google Scholar
  34. MacLatchy, L. (1998). Reconstruction of hip joint function in extant and fossil primates. In E. Strasser, J. G. Fleagle, A. L. Rosenberger & H. M. Mchenry (Eds.), Primate locomotion (pp. 111–130). New York: Springer.Google Scholar
  35. MacLatchy, L. M., & Bossert, W. H. (1996). An analysis of the articular surface distribution of the femoral head and acetabulum in anthropoids, with implications for hip function in Miocene hominoids. Journal of Human Evolution, 31, 425–453.CrossRefGoogle Scholar
  36. Pal, G. P., & Routa, R. V. (1986). A study of weight transmission through the cervical and upper thoracic regions of the vertebral column in man. Journal of Anatomy, 148, 245–261.Google Scholar
  37. Pal, G. P., & Routa, R. V. (1987). Transmission of weight through the lower thoracic and lumbar vertebral regions in man. Journal of Anatomy, 152, 93–105.Google Scholar
  38. Richter, J. (1970). Die fakultative Bipedie der Giraffengazelle Litocranius walleri sclateri. Ein Beitrag zur funktionellen Morphologie. Morphologische Jahrbuch, 114, 457–541.Google Scholar
  39. Russo, G. A., & Shapiro, L. J. (2013). Reevaluation of the lumbosacral region of Oreopithecus bambolii. Journal of Human Evolution, 65, 253–265.CrossRefGoogle Scholar
  40. Sanders, W. J. (1998). Comparative morphometric study of the australopithecine vertebral series Stw-H8/H41. Journal of Human Evolution, 34, 249–302.CrossRefGoogle Scholar
  41. Schmitt, D. (2009). Primate locomotor evolution: Biomechanical studies of primate locomotion and their implications for understanding primate neuroethology. In M. L. Platt & A. A. Ghazanfar (Eds.), Primate neuroethology (pp. 31–63). Oxford: Oxford University Press.Google Scholar
  42. Shapiro, L. (1993). Evaluation of “unique” aspects of human vertebral bodies and pedicles with a consideration of Australopithecus africanus. Journal of Human Evolution, 25, 433–470.CrossRefGoogle Scholar
  43. Stanford, C. B. (2002). Brief communication: Arboreal bipedalism in Bwindi chimpanzees. American Journal of Physical Anthropology, 119, 87–91.Google Scholar
  44. Stanford, C. B., Allen, J. S., & Antòn, S. (2009). Biological anthropology (2nd ed.). Upper Saddle River, NJ: Pearson Prentice-Hall.Google Scholar
  45. Stern, J. T. Jr., & Susman, R. L. (1983). The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology, 60, 279–317.CrossRefGoogle Scholar
  46. Steudel, K. (1981). Body size estimators in primate skeletal material. International Journal of Primatology, 2, 81–90.CrossRefGoogle Scholar
  47. Tardieu, C. (1979). Aspects bioméchaniques de l’articulation du genou chez les primates. Bulletins de la société anatomique de Paris, 4, 66–86.Google Scholar
  48. Thorpe, S. K. S., Holder, R. L., & Crompton, R. H. (2007). Origin of human bipedalism as an adaptation for locomotion on flexible branches. Science, 316, 1328–1331.CrossRefGoogle Scholar
  49. Tuttle, R. H. (1975). Parallelism, brachiation and hominoid phylogeny. In W. P. Luckett & F. S. Szalay (Eds.), The phylogeny of the primates: A multidisciplinary approach (pp. 447–480). New York: Plenum.CrossRefGoogle Scholar
  50. Vereecke, E. E., D’Août, K., & Aerts, P. (2006). Locomotor versatility in the white-handed gibbon (Hylobates lar): A spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits. Journal of Human Evolution, 50, 552–567.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of AnthropologyBoston UniversityBostonUSA

Personalised recommendations