Skip to main content

Why Was Human Evolution So Rapid?

  • Chapter
  • First Online:
Human Paleontology and Prehistory

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Nowhere in the entire fossil record of life do we find more dramatically accelerated accumulation of evolutionary novelty than we do in the genus Homo . Quite simply, and by whatever criteria you measure it, our species Homo sapiens is more different from its own precursors of two million years ago than is any other species living in the world today. What might account for this unusually rapid rate of evolution? A major influence was almost certainly material culture , though not in the gene-culture co-evolutionary context envisaged by the evolutionary psychologists. Rather, material culture enhances the ability of hominid populations to disperse at times when conditions are favorable for expansion, while incompletely insulating the resulting enlarged populations from environmental stress when circumstances deteriorate. In other words, by facilitating expansion beyond normal physiological limits in good times, culture makes populations more vulnerable to fragmentation in bad ones. Over the course of the Pleistocene , short-term but large-scale local environmental changes became increasingly frequent over large tracts of the Old World, further amplifying the stress-and-response cycle. Since the fixation probabilities of evolutionary novelties of all kinds (as well as of local extinctions) are promoted by population fragmentation and consequent small effective population sizes, we see in the synergy between environmental effects and material culture a sort of ratchet effect which would have acted to leverage rates of accumulating change. This interaction explains the extraordinarily fast tempo of evolution within the genus Homo by invoking perfectly routine evolutionary processes; and it eliminates any need for special pleading in the hominid case, at least in terms of mechanism. Apparent recent diminution in human brain size may result from greater algorithmic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey, D. H., & Geary, D. C. (2009). Hominid brain evolution: Climatic, ecological, and social competition models. Human Nature, 20, 67–79.

    Article  Google Scholar 

  • Beals, K. L., Smith, C. L., & Dodd, S. M. (1984). Brain size, cranial morphology, climate and time machines. Current Anthropology, 25, 301–330.

    Article  Google Scholar 

  • Collard, M., & Wood, B. (2015). Defining the genus Homo. In W. Henke & I. Tattersall (Eds.), Handbook of paleoanthropology (2nd ed., pp. 1575–1610). Berlin: Springer.

    Google Scholar 

  • de Heinzelin, J., Clark, J. D., White, T., Hart, W., Renne, P., WoldeGabriel, G., et al. (1999). Environment and behavior of 2.5 million-year-old Bouri hominids. Science, 284, 625–629.

    Article  Google Scholar 

  • Eldredge, N., & Cracraft, J. L. (1980). Phylogenetic patterns and the evolutionary process. New York: Columbia University Press.

    Google Scholar 

  • Gabunia, L., Vekua, A., Lordkipanidze, D., Swisher, C. C., Ferring, R., Justus, A., et al. (2000). Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: Taxonomy, geological setting and age. Science, 288, 1019–1025.

    Article  Google Scholar 

  • Gabounia, L., de Lumley, M.-A., Vekua, A., Lordkipanidze, D., & de Lumley, H. (2002). Découverte d’un nouvel hominidé à Dmanissi (Transcaucasie, Géorgie). Comptes Rendus Palevol, 1, 243–253.

    Article  Google Scholar 

  • Hartwig, W. (Ed.). (2002). The primate fossil record. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hawks, J. (2011). Selection for smaller brains in Holocene human evolution. arXiv:1102.5604v1.

  • Holloway, R. L., Broadfield, D. C., & Yuan, M. S. (2004). The human fossil record, vol. 3: Hominid endocasts, the paleoneurological evidence. New York: Wiley-Liss.

    Google Scholar 

  • Kimbel, W. H., Johanson, D. C., & Rak, Y. (1997). Systematic assessment of a maxilla of Homo from Hadar, Ethiopia. American Journal of Physical Anthropology, 103, 236–262.

    Article  Google Scholar 

  • Leakey, M. G., Spoor, F., Brown, F. H., Gathogo, P. N., Leakey, L. N., & McDougall, I. (2001). New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature, 410, 433–440.

    Article  Google Scholar 

  • Lepre, C. J., Roche, H., Kent, D. V., Harmand, S., Quinn, R. L., Brugal, J.-P., et al. (2011). An earlier origin for the Acheulian. Nature, 477, 82–85.

    Article  Google Scholar 

  • Lumsden, C., & Wilson, E. (1981). Genes, mind and culture: The coevolutionary process. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lumsden, C., & Wilson, E. (1982). Précis of Genes, mind and culture. Behavioral and Brain Sciences, 5, 1–7.

    Article  Google Scholar 

  • Matsudaira, K., & Ishida, T. (2010). Phylogenetic relationships and divergence dates of the whole mitochondrial genome sequences among three gibbon genera. Molecular Phylogenetics and Evolution, 55, 454–459.

    Article  Google Scholar 

  • Mercader, J., Barton, H., Gillespie J., Harris, J., Kuhn, S., Tyler, R., et al. (2007). 4,300-year-old chimpanzee sites and the origins of percussive stone technology. Proceedings of the National Academy of Science, USA, 104, 3043–3048.

    Google Scholar 

  • Messager, E., Lebreton, V., Marquez, L., Russo-Ermoli, E., Orain, R., Renault-Miskovsky, J., et al. (2011). Palaeoenvironments of early hominins in temperate and Mediterranean Eurasia: New palaeobotanical data from Palaeolithic key-sites and synchronous natural sequences. Quaternary Science Reviews, 30, 1439–1447.

    Article  Google Scholar 

  • Pickering, R., Dirks, P. G. M., Jinnah, Z., de Ruiter, D., Churchill, S. E., Herries, A. I. R., et al. (2011). Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo. Science, 333, 1421–1422.

    Article  Google Scholar 

  • Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Schrenk, F., Bromage, T., Betzler, C., Ring, U., & Juwayeyi, Y. (1993). Oldest Homo and Pliocene biogeography of the Malawi Rift. Nature, 365, 833–836.

    Article  Google Scholar 

  • Schwartz, J. H., & Tattersall, I. (2005). The human fossil record, vol. 3: Genera Australopithecus, Paranthropus, Orrorin, and overview. New York: Wiley-Liss.

    Google Scholar 

  • Semaw, S., Renne, P., Harris, J. W. K., Feibel, C. S., Bernor, R. L., Fesseha, N., et al. (1997). 2.5 million-year-old stone tools from Gona. Ethiopia. Nature, 385, 333–336.

    Article  Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.

    Google Scholar 

  • Sponheimer, M., & Lee-Thorp, J. (2007). Hominin paleodiets: The contribution of stable isotopes. In W. Henke & I. Tattersall (Eds.), Handbook of Paleoanthropology (Vol. 1, pp. 554–585). New York: Springer.

    Google Scholar 

  • Susman, R., Stern, J. T., & Jungers, W. L. (1984). Arboreality and bipedality in the Hadar hominids. Folia Primatologica, 43, 113–156.

    Article  Google Scholar 

  • Stone, A. C., Battistuzzi, F. U., Kubatko, L. S., Perry, G. H., Jr., Trudeau, E., Lin, H., et al. (2010). More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure. Philosophical Transactions of the Royal Society B, 365, 3277–3288.

    Article  Google Scholar 

  • Tattersall, I. (2008). An evolutionary framework for the acquisition of symbolic cognition by Homo sapiens. Comparative Cognition and Behavior Reviews, 3, 99–114.

    Article  Google Scholar 

  • Tattersall, I. (2012). Masters of the planet: The search for our human origins. New York: Palgrave Macmillan.

    Google Scholar 

  • Tattersall, I., & Schwartz, J. H. (2009). Evolution of the genus Homo. Annual Reviews of Earth and Planetary Sciences, 37, 67–92.

    Article  Google Scholar 

  • Tobias, P. V. (1995). The communication of the dead: Earliest vestiges of the origin of articulate language. Amsterdam: Kroon Lectures, Stichting Nederlands Museum voor Anthropologie en Praehisoire.

    Google Scholar 

  • Van Andel, T. H., & Davies, W. (Eds.). (2003). Neanderthals and modern humans in the European landscape during the last glaciation. Cambridge, UK: McDonald Institute for Archaeological Research.

    Google Scholar 

  • Wood, B., & Collard, M. (1999). The human genus. Science, 284, 65–71.

    Article  Google Scholar 

  • Wrangham, R. (2011). Chimpanzees, bonobos and the self-domestication hypothesis. American Journal of Primatology, 73, 33–45.

    Google Scholar 

Download references

Acknowledgments

My gratitude goes to Clive and Geraldine Finlayson, and to Darren Fa, for inviting me to the splendid Calpe’12 Conference on “The Human Niche: Ecology, Behavior and Culture,” for which the thoughts in this essay were originally gathered. And I equally warmly thank Assaf Marom and Erella Hovers for enabling me to express them in appreciation of our great friend and colleague Yoel Rak. The perceptive comments of two anonymous reviewers improved the manuscript, and Jennifer Steffey kindly prepared the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Tattersall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tattersall, I. (2017). Why Was Human Evolution So Rapid?. In: Marom, A., Hovers, E. (eds) Human Paleontology and Prehistory. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-46646-0_1

Download citation

Publish with us

Policies and ethics