3D Reconstruction of Spinal Posture of the Kebara 2 Neanderthal

  • Ella BeenEmail author
  • Asier Gómez-Olivencia
  • Patricia A. Kramer
  • Alon Barash
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Spinal posture has vast biomechanical, locomotor and pathological implications in hominins. Assessing the curvatures of the spine of fossil hominins can provide important information towards the understanding of their paleobiology. Unfortunately, complete hominin spines are very rarely preserved in the fossil record. The Neanderthal partial skeleton, Kebara 2 from Israel, constitutes a remarkable exception, representing an almost complete spine and pelvis. The aim of this study is, therefore, to create a new 3D virtual reconstruction of the spine of Kebara 2. To build the model, we used the CT scans of the sacrum, lumbar and thoracic vertebrae of Kebara 2, captured its 3D morphology, and, using visualization software (Amira 5.2©), aligned the 3D reconstruction of the original bones into the spinal curvature. First we aligned the sacrum and then we added one vertebra at a time, until the complete spine (T1-S5) was intact. The amount of spinal curvature (lordosis and kyphosis), the sacral orientation, and the coronal plane deviation was determined based on the current literature or measured and calculated specifically for this study based on published methods. This reconstruction provides, for the first time, a complete 3D virtual reconstruction of the spine of an extinct hominin. The spinal posture and spinopelvic alignment of Kebara 2 show a unique configuration compared with that of modern humans, suggesting locomotor and weight-bearing differences between the two. The spinal posture of Kebara 2 also shows slight asymmetry in the coronal plane. Stature estimation of Kebara 2 based on spinal length confirms that the height of Kebara 2 was around 170 cm. This reconstruction can now serve as the basis for a more complete reconstruction of the Kebara 2 specimen, which will include other parts of this remarkable fossil, such as the pelvis, the rib cage and the cervical spine.


3D reconstruction Locomotor differences Modern humans Spinal posture 


  1. Adams, M. A., McNally, D. S., Chinn, H., & Dolan, P. (1994). Posture and the compressive strength of the lumbar spine. International society of biomechanics award paper. Clinical Biomechanics, 9, 5–14.CrossRefGoogle Scholar
  2. Adams, M. A., Mannion, A. F., & Dolan, P. (1999). Personal risk factors for first-time low back pain. Spine, 24, 2497–2505.CrossRefGoogle Scholar
  3. Arensburg, B. (1991). The vertebral column, thoracic cage and hyoid bone. In O. Bar Yosef & B. Vandermeersch (Eds.), Le squelette Moustérien de Kébara 2 (pp. 113–146). Paris: CNRS.Google Scholar
  4. Arensburg, B., Bar-Yosef, O., Chech, M., Goldberg, P., Laville, H., Meignen, L., et al. (1985). Une sépulture néandertalienne dans la grotte de Kebara (Israel). Comptes Rendus de l’Académie des Sciences, 300, 227–230.Google Scholar
  5. Arjmand, N., & Shirazi-Adl, A. (2005). Biomechanics of changes in lumbar posture in static lifting. Spine, 30, 2637–2648.CrossRefGoogle Scholar
  6. Bae, J. S., Jang, J. S., Lee, S. H., & Kim, J. U. (2012). Radiological analysis of lumbar degenerative kyphosis in relation to pelvic incidence. The Spine Journal, 12, 1045–1051.CrossRefGoogle Scholar
  7. Barnes, E. (2012). Atlas of developmental field anomalies of the human skeleton. A paleopathology perspective. New Jersey: Wiley-Blackwell.CrossRefGoogle Scholar
  8. Barrey, C., Jund, J., Noseda, O., & Roussouly, P. (2007). Sagittal balance of the pelvis–spine complex and lumbar degenerative diseases. A comparative study about 85 cases. European Spine Journal, 16, 1459–1467.CrossRefGoogle Scholar
  9. Been, E. (2005). The anatomy of the lumbar spine of Homo neanderthalensis and its phylogenetic and functional implications. PhD Dissertation, Tel Aviv University.Google Scholar
  10. Been, E., Pessah, H., Been, L., Tawil, A., & Peleg, S. (2007). New method for predicting the lumbar lordosis angle in skeletal material. The Anatomical Record, 290, 1568–1573.CrossRefGoogle Scholar
  11. Been, E., Barash, A., Pessah, H., & Peleg, S. (2010). A new look at the geometry of the lumbar spine. Spine, 35, E1014–E1017.CrossRefGoogle Scholar
  12. Been, E., Gómez-Olivencia, A., & Kramer, P. A. (2012). Lumbar lordosis of extinct hominins. American Journal of Physical Anthropology, 147, 64–77.CrossRefGoogle Scholar
  13. Been, E., Pessah, H., Peleg, S., & Kramer, P. (2013). Sacral orientation in hominin evolution. Advances in Anthropology, 3, 133–141.CrossRefGoogle Scholar
  14. Been, E., Gómez-Olivencia, A., & Kramer, P. A. (2014). Lumbar lordosis in extinct hominins: Implications of the pelvic incidence. American Journal of Physical Anthropolgy, 154, 307–314.CrossRefGoogle Scholar
  15. Bonmatí, A., Gómez–Olivencia, A., Arsuaga, J.-L., Carretero, J. M., Gracia, A, Martínez, I., et al. (2010). A Middle Pleistocene lower back and pelvis from an aged individual from the Sima de los Huesos site, Spain. Proceedings of the National Academy of Science USA, 107, 18386–18391.Google Scholar
  16. Booth, C. K., Bridwell, K. H., Lenke, L. G., Baldus, C. R., & Blanke, K. M. (1999). Complications and predictive factors for the successful treatment of flat back deformity (fixed sagittal imbalance). Spine, 24, 1712–1720.CrossRefGoogle Scholar
  17. Boulay, C., Tardieu, C., Hecquet, J., Benaim, C., Mouilleseaux, B., Marty, C., et al. (2006). Sagittal alignment of spine and pelvis regulated by pelvic incidence: Standard values and prediction of lordosis. European Spine Journal, 15, 415–422.CrossRefGoogle Scholar
  18. Carretero, J. M. Rodríguez, L., García-González, R., Arguaga, J.-L., Gómez–Olivencia, A., Lorenzo, C., et al. (2012). Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain). Journal of Human Evolution, 62, 242–255.Google Scholar
  19. Chen, Y. L. (1999). Geometric measurements of the lumbar spine in Chinese men during trunk flexion. Spine, 24, 666–669.CrossRefGoogle Scholar
  20. Cil, A., Yazic, M., Uzumcugil, A., Kandemir, U., Alanay, A., Alanay, Y., et al. (2005). The evolution of sagittal alignment of the spine during childhood. Spine, 30, 93–100.CrossRefGoogle Scholar
  21. Cobb, J. R. (1948). Outline for the study of scoliosis. Instructional course lectures, The American academy of orthopaedic surgeons (Vol. 5, pp. 261–275). Ann Arbor: JW. Edwards.Google Scholar
  22. Coillard, C., & Rivard, C. H. (1996). Vertebral deformities and scoliosis. European Spine Journal, 5, 91–100.CrossRefGoogle Scholar
  23. Dickson, R. A., Lawton, J. O., Archer, I. A., & Butt, W. P. (1984). The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. Bone & Joint Journal, 66(1), 8–15.‏Google Scholar
  24. Duday, H., & Arensburg, B. (1991). La pathologie. In O. Bar Yosef & B. Vandermeersch (Eds.), Le squelette moustérian de Kebara 2 (pp. 179–194). Paris: Editions CNRS.Google Scholar
  25. Farfan, H. F. (1995). Form and function of the musculoskeletal system as revealed by mathematical analysis of the lumbar spine. Spine, 20, 1462–1474.CrossRefGoogle Scholar
  26. Fox, M., & Whitcome, K. K. (2011). Neanderthal lumbopelvic anatomy and the biomechanical effects of a reduced lumbar lordosis. Ph.D. Dissertation University of Cincinnati.Google Scholar
  27. Gelb, D. E., Lenke, L. G., Bridwell, K. H., Blanke, K. M., & McEnery, K. W. (1995). An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine, 20, 1351–1358.CrossRefGoogle Scholar
  28. Goh, S., Price, R. I., Leedman, P. J., & Singer, K. P. (1999). The relative influence of vertebral body and intervertebral disk shape on thoracic kyphosis. Clinical Biomechanics, 14, 439–448.CrossRefGoogle Scholar
  29. Gómez-Olivencia, A., Eaves-Johnson, K. L., Franciscus, R. G., Carretero, J. M., & Arsuaga, J.-L. (2009). Kebara 2: New insights regarding the most complete Neandertal thorax. Journal of Human Evolution, 57, 75–90.CrossRefGoogle Scholar
  30. Gómez-Olivencia, A., Been, E., Arsuaga, J.-L., & Stock, J. T. (2013). The Neandertal vertebral column. 1—The cervical spine. Journal of Human Evolution, 64, 608–630.CrossRefGoogle Scholar
  31. Gracovetsky, S., & Iacono, S. (1987). Energy transfer in the spinal cord. Journal of Biomedical Engineering, 9, 99–114.CrossRefGoogle Scholar
  32. Gracovetsky, S., Farfan, H., & Helleur, C. (1985). The abdominal mechanism. Spine, 10, 317–324.CrossRefGoogle Scholar
  33. Grasso, R., Zago, M., & Lacquaniti, F. (2000). Interactions between posture and locomotion: Motor patterns in humans walking with bent posture versus erect posture. Journal of Neurophysiology, 83, 288–300.Google Scholar
  34. Harrison, D. E., Cailliet, R., Harrison, D. D., Janik, T. J., & Holland, B. (2002). Changes in sagittal lumbar configuration with a new method of extension traction: Nonrandomized clinical controlled trial. Archives of Physical Medicine and Rehabilitation, 83, 1585–1591.CrossRefGoogle Scholar
  35. Hart, R. A., Badra, M. I., Madala, A., & Yoo, J. U. (2007). Use of pelvic incidence as a guide to reduction of H-type spino-pelvic dissociation injuries. Journal of Orthopedic Trauma, 21, 369–374.CrossRefGoogle Scholar
  36. Hirose, D., Ishida, K., Nagano, Y., Takahashi, T., & Yamamoto H. (2004). Posture of the trunk in the sagittal plane is associated with gait in community-dwelling elderly population. Clinical Biomechanics, 19, 57–63.Google Scholar
  37. Hosman, A. J., Langeloo, D. D., de Kleuver, M., Anderson, P. G., Veth R, P., & Slot, G. H. (2002). Analysis of the sagittal plane after surgical management for Scheuermann’s disease: A view on overcorrection and the use of an anterior release. Spine, 27, 167–175.Google Scholar
  38. Jackson, R. P., & Hales, C. (2000). Congruent spinopelvic alignment on standing lateral radiographs of adult volunteers. Spine, 25, 2808–2815.CrossRefGoogle Scholar
  39. Jang, J. S., Lee, S. H., Min, J. H., & Maeng, D. H. (2009). Influence of lumbar lordosis restoration on thoracic curve and sagittal position in lumbar degenerative kyphosis patients. Spine, 34, 280–2844.CrossRefGoogle Scholar
  40. Kimura, S., Steinbach, G. C., Watenpaugh, D. E., & Hargens, A. R. (2001). Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine, 26, 2596–2600.CrossRefGoogle Scholar
  41. Korovessis, P. G., Stamatakis, M. V., & Baikousis, A. G. (1998). Reciprocal angulation of vertebral bodies in the sagittal plane in an asymptomatic Greek population. Spine, 23, 700–704.CrossRefGoogle Scholar
  42. Kunkel, M. A., Herkommer, M., Reinehr, M., Böckers, T. M., & Wilke, H. J. (2011). Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: An anatomical and radiographic study of the thoracic spine. Journal of Anatomy, 219, 375–387.CrossRefGoogle Scholar
  43. Kuntz, C., Levin, L. S., Ondra, S. L., Shaffrey, C. I., & Morgan, C. J. (2007). Neutral upright sagittal spinal alignment from the occiput to the pelvis in asymptomatic adults: A review and resynthesis of the literature. Journal of Neurosurgery Spine, 6, 104–112.CrossRefGoogle Scholar
  44. Legaye, J. (2007). The femoro-sacral posterior angle: An anatomical sagittal pelvic parameter usable with dome-shaped sacrum. European Spine Journal, 16, 219–225.CrossRefGoogle Scholar
  45. Mac-Thiong, J. M., Roussouly, P., Berthonnaud, E., & Guigui, P. (2010). Sagittal parameters of global spinal balance: Normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine, 35, E1193–E1198.CrossRefGoogle Scholar
  46. Masharawi, Y., Salame, K., Mirovsky, Y., Peleg, S., Dar, G., Steinberg, N., et al. (2008). Vertebral body shape variation in the thoracic and lumbar spine: Characterization of its asymmetry and wedging. Clinical Anatomy, 21, 46–54.CrossRefGoogle Scholar
  47. Modi, H. N., Suh, S. W., Song, H. R., Yang, J. H., Kim, H. J., & Modi, C. H. (2008). Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis: A cross sectional study in 150 patients. Scoliosis, 3, 1–9.CrossRefGoogle Scholar
  48. Nagesh, K. R., & Kumar, G. P. (2006). Estimation of stature from vertebral column length in South Indians. Legal Medicine, 8, 269–272.CrossRefGoogle Scholar
  49. Negrini, S., Aulisa, A. G., Aulisa, L., Circo, A. B., de Mauroy, J. C., Durmala, J., et al. (2012). 2011 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis, 7, 3.Google Scholar
  50. Peleg, S., Dar, G., Steinberg, N., Peled, N., Hershkovitz, I., & Masharawi, Y. (2007). Orientation of the human sacrum: Anthropological perspectives and methodological approaches. American Journal of Physical Anthropology, 133, 967–977.CrossRefGoogle Scholar
  51. Pearson, O. M. (2000). Postcranial remains and the origins of modern humans. Evolutionary Anthropology, 9, 229–247.CrossRefGoogle Scholar
  52. Rak, Y. (1991). The pelvis. In O. Bar Yosef & B. Vandermeersch (Eds.), Le squelette Moustérian de Kebara 2 (pp. 113–146). Paris: Editions CNRS.Google Scholar
  53. Rak, Y., & Arensburg, B. (1987). Kebara 2 Neandertal pelvis: First look at a complete inlet. American Journal of Physical Anthropology, 73, 227–231.CrossRefGoogle Scholar
  54. Ruff, C. B. (1991). Climate and body shape in hominid evolution. Journal of Human Evolution, 21, 81–105.CrossRefGoogle Scholar
  55. Ruff, C. B., Niskanen, M., Junno, J. A., & Jamison, P. (2005). Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. Journal of Human Evolution, 48, 381–392.CrossRefGoogle Scholar
  56. Sanders, W. J. (1995). Function, allometry, and evolution of the australopithecine lower precaudal spine. Ph.D. Dissertation, New York University.Google Scholar
  57. Sanders, W. J. (1998). Comparative morphometric study of the Australopithecine vertebral series Stw-H8/H41. Journal of Human Evolution, 34, 249–302.CrossRefGoogle Scholar
  58. Sarwahi, V., Boachie-Adjei, O., Backus, S. I., & Taira, G. (2002). Characterization of gait function in patients with postsurgical sagittal (flatback) deformity—a prospective study of 21 patients. Spine, 27, 2328–2337.Google Scholar
  59. Sawyer, G. J., & Maley, B. (2005). Neanderthal reconstructed. The Anatomical Record, 283, 23–31.CrossRefGoogle Scholar
  60. Scherrer, S. A., Begon, M., Leardini, A., Coillard, C., Rivard, C. H., & Allard, P. (2013). Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis. PLoS ONE, 8, e71504.CrossRefGoogle Scholar
  61. Schiess, R., Boeni, T., Rühli, F., & Haeusler, M. (2014). Revisiting scoliosis in the KNM-WT 15000 Homo erectus skeleton. Jornal of Human Evolution, 67, 48–59.CrossRefGoogle Scholar
  62. Shefi, S., Soudack, M., Konen, E., & Been, E. (2013). Development of the lumbar lordotic curvature in children from age 2 to 20 years. Spine, 38, E602–E608.CrossRefGoogle Scholar
  63. Simon, P., Espinoza Orías, A. A., Andersson, G. B., An, H. S., & Inoue, N. (2012). In vivo topographic analysis of lumbar facet joint space width distribution in healthy and symptomatic subjects. Spine, 37, 1058–1064.CrossRefGoogle Scholar
  64. Stokes, I. A., & Aronsson, D. D. (2001). Disc and vertebral wedging in patients with progressive scoliosis. Journal of Spinal Disorders and Techniques, 14, 317–322.CrossRefGoogle Scholar
  65. Terazawa, K., Alkabane, H., Gotouda, H., Mizukami, K., Nagao, M., & Takatori, T. (1990). Estimating stature from the length of the lumbar part of the spine in Japanese. Medicine, Science and the Law, 30, 354–357.Google Scholar
  66. Vandermeersch, B. (1991). La ceinture scapulaire et les membres supérieures. In O. Bar Yosef & B. Vandermeersch (Eds.), Le squelette Moustérien de Kébara 2 (pp. 157–178). Paris: Editions CNRS.Google Scholar
  67. Vaz, G., Roussouly, P., Berthhonnaud, E., & Dimnet, J. (2002). Sagittal morphology and equilibrium of pelvis and spine. European Spine Journal, 11, 80–87.CrossRefGoogle Scholar
  68. Vialle, R., Levassor, N., Rillardon, L., Templier, A., Skalli, W., & Guigui, P. (2005). Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. Journal of Bone and Joint Surgery, 87, 260–267.Google Scholar
  69. Weaver, T. D. (2009). The meaning of Neandertal skeletal morphology. Proceedings of the National Academy of Science USA, 106, 16028–16033.CrossRefGoogle Scholar
  70. Whitcome, K. K., Shapiro, L. J., & Lieberman, D. E. (2007). Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature, 450, 1075–1078.CrossRefGoogle Scholar
  71. Williams, S. A., Ostrofsky, K. R., Frater, N., Churchill, S. E., Schmid, P., & Berger, L. R. (2013). The vertebral column of Australopithecus sediba. Science, 340, 1232996.CrossRefGoogle Scholar
  72. Zhou, S. H., McCarthy, I. D., McGregor, A. H., Coombs, R. R., & Hughes, S. P. (2000). Geometric dimensions of the lower lumbar vertebrae: Analysis of data from digitized CT images. European Spine Journal, 9, 242–248.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ella Been
    • 1
    • 2
    Email author
  • Asier Gómez-Olivencia
    • 3
    • 4
    • 5
  • Patricia A. Kramer
    • 6
  • Alon Barash
    • 7
  1. 1.Faculty of Health Professions, Physical Therapy DepartmentOno Academic CollegeKiryat OnoIsrael
  2. 2.Sackler Faculty of Medicine, Department of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
  3. 3.IKERBASQUE. Basque Foundation for Science & Facultad de Ciencia y Tecnología, Department o de Estratigrafía y PaleontologíaEuskal Herriko Unibertsitatea, UPV-EHUBilbaoSpain
  4. 4.Département de PréhistoireMuséum National d’Histoire Naturelle, Musée de l’HommeParisFrance
  5. 5.Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento HumanosMadridSpain
  6. 6.Departments of Anthropology and Orthopaedics and Sports MedicineUniversity of WashingtonSeattleUSA
  7. 7.Faculty of Medicine in the GalileeBar-Ilan UniversityZefatIsrael

Personalised recommendations