Skip to main content

Covering Population Variability: Morphing of Computation Anatomical Models

Part of the Lecture Notes in Computer Science book series (LNIP,volume 9968)

Abstract

We present a method to change the volume of organs or tissues in computational anatomical models by simulating the human body as a biomechanical solid with initial strains causing local volume shrinkage or expansion. The non-linear hyperelastic material behavior is solved with the finite element method. The bone positions are prescribed and treated as rigid bodies surrounded by elastic soft tissue. A multi-domain mesh defines individual bones and at least one soft tissue region. Each region can have different material properties, volume growth rates or mesh settings. The method can be used to deform complex anatomical models, such as the Virtual Population models. The proposed strategy has been used to parametrize models by different BMI levels, change the volume of selected organs, and modify the posture of anatomical models.

Keywords

  • Anatomical model
  • Simulation
  • Population variability
  • Obesity
  • Parametrization
  • BMI

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-46630-9_2
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-46630-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Ali-Hamadi, D., Liu, T., Gilles, B., Kavan, L., Faure, F., Palombi, O., Cani, M.P.: Anatomy transfer. ACM Trans. Graph. (TOG) 32(6), 188 (2013)

    CrossRef  Google Scholar 

  2. Attene, M.: A lightweight approach to repairing digitized polygon meshes. Vis. Comput. 26(11), 1393–1406 (2010)

    CrossRef  Google Scholar 

  3. Bastioni, M.: The makehuman applicationopen source tool for making 3d characters (2011). www.makehuman.org

  4. Broggio, D., Beurrier, J., Bremaud, M., Desbree, A., Farah, J., Huet, C., Franck, D.: Construction of an extended library of adult male 3d models: rationale and results. Phys. Med. Biol. 56(23), 7659 (2011)

    CrossRef  Google Scholar 

  5. Calakli, F., Taubin, G.: SSD: smooth signed distance surface reconstruction. In: Computer Graphics Forum, vol. 30, pp. 1993–2002. Wiley Online Library (2011)

    Google Scholar 

  6. Cherubini, E., Chavannes, N., Kuster, N.: Realistic skeleton based deformation of high-resolution anatomical human models for electromagnetic simulations. In: The 31st Annual Meeting of the Bioelectromagnetics Society (2009)

    Google Scholar 

  7. Christ, A., Kainz, W., Hahn, E.G., Honegger, K., Zefferer, M., Neufeld, E., Rascher, W., Janka, R., Bautz, W., Chen, J., Kiefer, B., Schmitt, P., Hollenbach, H.P., Shen, J., Oberle, M., Szczerba, D., Kam, A., Guag, J.W., Kuster, N.: The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 55(2), N23 (2010)

    CrossRef  Google Scholar 

  8. Collins, C.M., Wang, Z.: Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn. Reson. Med. 65(5), 1470–1482 (2011)

    CrossRef  Google Scholar 

  9. Corcoles, J., Zastrow, E., Kuster, N.: Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants. Phys. Med. Biol. 60(18), 7293 (2015)

    CrossRef  Google Scholar 

  10. Fonseca, T.F., Bogaerts, R., Hunt, J., Vanhavere, F.: A methodology to develop computational phantoms with adjustable posture for WBC calibration. Phys. Med. Biol. 59(22), 6811 (2014)

    CrossRef  Google Scholar 

  11. Gosselin, M.C., Neufeld, E., Moser, H., Huber, E., Farcito, S., Gerber, L., Jedensjo, M., Hilber, I., Gennaro, F., Lloyd, B.A., Cherubini, E., Szczerba, D., Kainz, W., Kuster, N.: Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0. Phys. Med. Biol. 59(18), 5287 (2014)

    CrossRef  Google Scholar 

  12. Harris, C.T., Handler, W.B., Chronik, B.A.: Electromagnet design allowing explicit and simultaneous control of minimum wire spacing and field uniformity. Concepts Magn. Reson. Part B: Magn. Reson. Eng. 41(4), 120–129 (2012)

    CrossRef  Google Scholar 

  13. Hynčík, L., Nováček, V., Bláha, P., Chvojka, O., Krejčí, P.: On scaling of human body models. Appl. Comput. Mech. 1, 63–76 (2007)

    Google Scholar 

  14. Lloyd, B., Cherubini, E., Chavannes, N., Kuster, N.: Realistic physics-based posing of anatomical models for safety evaluations and computational life science in various configurations. In: BioEM 2016, June 2016

    Google Scholar 

  15. Menzel, H., Clement, C., DeLuca, P.: ICRP publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann. ICRP 39(2), 1 (2009)

    CrossRef  Google Scholar 

  16. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. (TOG) 24, 471–478 (2005)

    CrossRef  Google Scholar 

  17. Murbach, M., Neufeld, E., Capstick, M., Kainz, W., Brunner, D.O., Samaras, T., Pruessmann, K.P., Kuster, N.: Thermal tissue damage model analyzed for different whole-body SAR and scan durations for standard MR body coils. Magn. Reson. Med. 71(1), 421–431 (2014)

    CrossRef  Google Scholar 

  18. Neufeld, E., Cassara, A., Montanaro, H., Kuster, N., Kainz, W.: Functionalized anatomical models for EM-neuron interaction modeling. Phys. Med. Biol., February 2016

    Google Scholar 

  19. Nieto, J.R., Susin, A.: Cage based deformations: a survey. In: Hidalgo, M.G., Torres, A.M., Gmez, J.V. (eds.) Deformation Models. Lecture Notes in Computational Vision and Biomechanics, vol. 7, pp. 75–99. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  20. Santin, G., Staelens, S., Taschereau, R., Descourt, P., Schmidtlein, C., Simon, L., Visvikis, D., Jan, S., Buvat, I.: Evolution of the GATE project: new results and developments. Nucl. Phys. B Proc. Suppl. 172, 101–103 (2007)

    CrossRef  Google Scholar 

  21. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP 2007, pp. 109–116. Eurographics Association, Aire-la-Ville (2007)

    Google Scholar 

  22. Szczerba, D., Neufeld, E., Zefferer, M., Bhlmann, B., Kuster, N.: FEM based morphing of whole body human models. In: 2011 XXXth URSI of General Assembly and Scientific Symposium, pp. 1–3. IEEE (2011)

    Google Scholar 

  23. Szekely, G., Brechbhler, C., Dual, J., Enzler, R., Hug, J., Hutter, R., Ironmonger, N., Kauer, M., Meier, V., Niederer, P., Rhomberg, A., Schmid, P., Schweitzer, G., Thaler, M., Vuskovic, V., Tröster, G., Haller, U., Bajka, M.: Virtual reality-based simulation of endoscopic surgery. Presence: Teleoperators Virtual Environ. 9(3), 310–333 (2000)

    CrossRef  Google Scholar 

  24. Vezin, P., Verriest, J.P.: Development of a set of numerical human models for safety, June 2005

    Google Scholar 

  25. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, August 2005

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding and support from the Swiss Commission for Technology and Innovation (Project: S4L-CAPITALIS CTI 14930.1 PFLS-LS), COST Action BM1309 and from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 282891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryn Lloyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Lloyd, B., Cherubini, E., Farcito, S., Neufeld, E., Baumgartner, C., Kuster, N. (2016). Covering Population Variability: Morphing of Computation Anatomical Models. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2016. Lecture Notes in Computer Science(), vol 9968. Springer, Cham. https://doi.org/10.1007/978-3-319-46630-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46630-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46629-3

  • Online ISBN: 978-3-319-46630-9

  • eBook Packages: Computer ScienceComputer Science (R0)