Skip to main content

Registration of Pathological Images

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9968))

Included in the following conference series:


This paper proposes an approach to improve atlas-to-image registration accuracy with large pathologies. Instead of directly registering an atlas to a pathological image, the method learns a mapping from the pathological image to a quasi-normal image, for which more accurate registration is possible. Specifically, the method uses a deep variational convolutional encoder-decoder network to learn the mapping. Furthermore, the method estimates local mapping uncertainty through network inference statistics and uses those estimates to down-weight the image registration similarity measure in areas of high uncertainty. The performance of the method is quantified using synthetic brain tumor images and images from the brain tumor segmentation challenge (BRATS 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.

    Such approaches, as well as our proposed approach, are of course also applicable to general image-to-image registration. We use atlas-to-image registration as our motivating application here.

  2. 2.

    In this paper we use brain tumors as example pathologies; however, our approach is applicable to other pathologies.

  3. 3.

    Other, potentially better choices are of course possible.

  4. 4.

    Real tumor appearance is not known in such areas.


  1. Brett, M., Leff, A.P., Rorden, C., Ashburner, J.: Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14(2), 486–500 (2001)

    Article  Google Scholar 

  2. Cao, T., Zach, C., Modla, S., Powell, D., Czymmek, K., Niethammer, M.: Multi-modal registration for correlative microscopy using image analogies. MedIA 18(6), 914–926 (2014)

    Google Scholar 

  3. Chitphakdithai, N., Duncan, J.S.: Non-rigid registration with missing correspondences in preoperative and postresection brain images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 367–374. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1), 313–327 (2011)

    Article  Google Scholar 

  5. Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: GLISTR: glioma image segmentation and registration. TMI 31(10), 1941–1954 (2012)

    Google Scholar 

  6. Im, D.J., Ahn, S., Memisevic, R., Bengio, Y.: Denoising criterion for variational auto-encoding framework. CoRR abs/1511.06406 (2015)

    Google Scholar 

  7. Irimia, A., Wang, B., Aylward, S.R., Prastawa, M.W., Pace, D.F., Gerig, G., Hovda, D.A., Kikinis, R., Vespa, P.M., Horn, J.D.V.: Neuroimaging of structural pathology and connectomics in traumatic brain injury: toward personalized outcome prediction. Neuroimage Clin. 1(1), 1–17 (2012)

    Article  Google Scholar 

  8. Jog, A., Roy, S., Carass, A., Prince, J.L.: Magnetic resonance image synthesis through patch regression. In: ISBI, pp. 350–353 (2013)

    Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs/1312.6114 (2013)

    Google Scholar 

  10. Liu, X., Niethammer, M., Kwitt, R., Singh, N., McCormick, M., Aylward, S.: Low-rank atlas image analyses in the presence of pathologies. TMI 34(12), 2583–2591 (2015)

    Google Scholar 

  11. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  12. Menze, B.H., Reyes, M., Leemput, K.V.: The multimodal brain tumor image segmentation benchmark (BRATS). TMI 34(10), 1993–2024 (2015)

    Google Scholar 

  13. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Prog. Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  14. Niethammer, M., Hart, G.L., Pace, D.F., Vespa, P.M., Irimia, A., Van Horn, J.D., Aylward, S.R.: Geometric metamorphosis. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 639–646. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. MedIA 15(4), 622–639 (2011)

    Google Scholar 

  16. Ou, Y., Akbari, H., Bilello, M., Da, X., Davatzikos, C.: Comparative evaluation of registration algorithms in different brain databases with varying difficulty: results and insights. TMI 33(10), 2039–2065 (2014)

    Google Scholar 

  17. Reuter, M., Rosas, D.H., Fischl, B.: Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4), 1181–1196 (2010)

    Article  Google Scholar 

  18. Roy, S., Carass, A., Shiee, N., Pham, D.L., Prince, J.L.: MR contrast synthesis for lesion segmentation. In: ISBI, pp. 932–935 (2010)

    Google Scholar 

  19. Roy, S., Carass, A., Jog, A., Prince, J.L., Lee, J.: MR to CT registration of brains using image synthesis. SPIE Med. Imaging 9034, 903419 (2014)

    Google Scholar 

  20. Tieleman, T., Hinton, G.: Lecture 6.5-RMSprop, COURSERA: neural networks for machine learning (2012)

    Google Scholar 

  21. Wang, B., Prastawa, M., Awate, S., Irimia, A., Chambers, M., Vespa, P., Horn, J.V., Gerig, G.: Segmentation of serial MRI of TBI patients using personalized atlas construction and topological change estimation. In: ISBI, pp. 1152–1155 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yang, X., Han, X., Park, E., Aylward, S., Kwitt, R., Niethammer, M. (2016). Registration of Pathological Images. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2016. Lecture Notes in Computer Science(), vol 9968. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46629-3

  • Online ISBN: 978-3-319-46630-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics