Skip to main content

Model Order Reduction for Differential-Algebraic Equations: A Survey

  • Chapter
  • First Online:
Surveys in Differential-Algebraic Equations IV

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

Abstract

In this paper, we discuss the model order reduction problem for descriptor systems, that is, systems with dynamics described by differential-algebraic equations. We focus on linear descriptor systems as a broad variety of methods for these exist, while model order reduction for nonlinear descriptor systems has not received sufficient attention up to now. Model order reduction for linear state-space systems has been a topic of research for about 50 years at the time of writing, and by now can be considered as a mature field. The extension to linear descriptor systems usually requires extra treatment of the constraints imposed by the algebraic part of the system. For almost all methods, this causes some technical difficulties, and these have only been thoroughly addressed in the last decade. We will focus on these developments in particular for the popular methods related to balanced truncation and rational interpolation. We will review efforts in extending these approaches to descriptor systems, and also add the extension of the so-called stochastic balanced truncation method to descriptor systems which so far cannot be found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Usually, the term moments is used to denote the coefficients of the Taylor series at s 0 = 0.

  2. 2.

    It should be noted that by abuse of notation, these factors are neither necessarily upper triangular nor square, but we assume them to be of full rank. In particular, for non-minimal systems, these factors will in general be rectangular as then the Gramians will be rank deficient.

  3. 3.

    For partial convergence results, see [52].

References

  1. Ahmad, M.I., Benner, P., Goyal, P.: Krylov subspace-based model reduction for a class of bilinear descriptor systems. J. Comput. Appl. Math. 315, 303–318 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alì, G., Banagaaya, N., Schilders, W., Tischendorf, C.: Index-aware model order reduction for linear index-2 DAEs with constant coefficients. SIAM J. Sci. Comput. 35, A1487–A1510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alì, G., Banagaaya, N., Schilders, W., Tischendorf, C.: Index-aware model order reduction for differential-algebraic equations. Math. Comput. Model. Dyn. Syst. 20 (4), 345–373 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAAJ 46 (7), 1803–1813 (2008)

    Article  Google Scholar 

  5. Amsallem, D., Farhat, C.: An online method for interpolating linear reduced-order models. SIAM J. Sci. Comput. 33 (5), 2169–2198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng. 80 (9), 1241–1258 (2009)

    Article  MATH  Google Scholar 

  7. Anderson, B., Vongpanitlerd, S.: Network Analysis and Synthesis. Prentice Hall, Englewood Cliffs, NJ (1973)

    Google Scholar 

  8. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  9. Bai, Z., Su, Y.: Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method. SIAM J. Sci. Comput. 26, 1692–1709 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baur, U., Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation. at-Automatisierungstechnik 57 (8), 411–419 (2009)

    Google Scholar 

  11. Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33 (5), 2489–2518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Meth. Eng. 21 (4), 331–358 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benner, P.: Solving large-scale control problems. IEEE Contr. Syst. Mag. 24 (1), 44–59 (2004)

    Article  Google Scholar 

  14. Benner, P.: Numerical linear algebra for model reduction in control and simulation. GAMM Mitteilungen 29 (2), 275–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benner, P.: System-theoretic methods for model reduction of large-scale systems: simulation, control, and inverse problems. In: Troch, I., Breitenecker, F. (eds.) Proceedings of MathMod 2009 (Vienna, 11–13 February 2009), ARGESIM-Reports, vol. 35, pp. 126–145. Argesim, Wien (2009)

    Google Scholar 

  16. Benner, P.: Advances in balancing-related model reduction for circuit simulation. In: Roos, J., Costa, L. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 469–482. Springer, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Benner, P.: Partial stabilization of descriptor systems using spectral projectors. In: Van Dooren, P., Bhattacharyya, S.P., Chan, R.H., Olshevsky, V., Routray, A. (eds.) Numerical Linear Algebra in Signals, Systems and Control. Lecture Notes in Electrical Engineering, vol. 80, pp. 55–76. Springer, Netherlands (2011)

    Chapter  Google Scholar 

  18. Benner, P., Quintana-Ortí, E.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorim. 20 (1), 75–100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Benner, P., Feng, L.: A robust algorithm for parametric model order reduction based on implicit moment matching. In: Quarteroni, A., Rozza, R. (eds.) Reduced Order Methods for Modeling and Computational Reduction, vol. 9, pp. 159–186. Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  20. Benner, P., Goyal, P.: Multipoint interpolation of Volterra series and H 2-model reduction for a family of bilinear descriptor systems. Systems Control Lett. 96, 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Benner, P., Heiland, J.: LQG-balanced truncation low-order controller for stabilization of laminar flows. In: King, R. (ed.) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 127, pp. 365–379. Springer International Publishing, Cham (2015)

    Google Scholar 

  22. Benner, P., Saak, J.: Efficient balancing based MOR for large scale second order systems. Math. Comput. Model. Dyn. Syst. 17 (2), 123–143 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Benner, P., Saak, J.: Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36 (1), 32–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Benner, P., Sokolov, V.: Partial realization of descriptor systems. Syst. Control Lett. 55 (11), 929–938 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Benner, P., Stykel, T.: Numerical solution of projected algebraic Riccati equations. SIAM J. Numer. Anal. 52 (2), 581–600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Benner, P., Quintana-Ortí, E., Quintana-Ortí, G.: Efficient numerical algorithms for balanced stochastic truncation. Int. J. Appl. Math. Comput. Sci. 11 (5), 1123–1150 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  28. Benner, P., Hinze, M., ter Maten, E.J.W. (eds.): Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74 Springer, Dodrecht (2011)

    Google Scholar 

  29. Benner, P., Hossain, M.S., Stykel, T.: Model reduction of periodic descriptor systems using balanced truncation. In: Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 187–200. Springer, Dodrecht (2011)

    Chapter  Google Scholar 

  30. Benner, P., Kürschner, P., Saak, J.: Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numer. Algoritm. 62 (2), 225–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Benner, P., Kürschner, P., Saak, J.: An improved numerical method for balanced truncation for symmetric second-order systems. Math. Comput. Model. Dyn. Syst. 19 (6), 593–615 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Benner, P., Hossain, M.S., Stykel, T.: Low-rank iterative methods for periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems. Numer. Algoritm. 67 (3), 669–690 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Benner, P., Kürschner, P., Saak, J.: Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Electron. Trans. Numer. Anal. 43, 142–162 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric systems. SIAM Rev. 57 (4), 483–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Benner, P., Saak, J., Uddin, M.M.: Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numer. Alg. Cont. Opt. 6 (1), 1–20 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Berger, T., Reis, T.: Controllability of linear differential-algebraic systems - a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, pp. 1–61. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  37. Berger, T., Reis, T., Trenn, S.: Observability of linear differential-algebraic systems: a survey. In: Ilchmann, A., Reis, T. (eds.) Surveys in Differential-Algebraic Equations IV. Differential-Algebraic Equations Forum, pp. 161–220. Springer, Heidelberg/New York/Dordrecht/London (2017)

    Chapter  Google Scholar 

  38. Bollhöfer, M., Eppler, A.: Low-rank Cholesky factor Krylov subspace methods for generalized projected Lyapunov equations. In: Benner, P. (ed.) System Reduction for Nanoscale IC Design. Mathematics in Industry, vol. 20. Springer, Berlin, Heidelberg (to appear)

    Google Scholar 

  39. Brenan, K., Campbell, S., Petzold, L.: The Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland Publishing Co., New York (1989)

    MATH  Google Scholar 

  40. Chu, E.W., Fan, H.Y., Lin, W.W.: Projected generalized discrete-time periodic Lyapunov equations and balanced realization of periodic descriptor systems. SIAM J. Matrix Anal. Appl. 29 (3), 982–1006 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer, Berlin, Heidelberg (1989)

    Google Scholar 

  42. Daniel, L., Siong, O., Chay, L., Lee, K., White, J.: A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23 (5), 678–693 (2004)

    Article  Google Scholar 

  43. Degroote, J., Vierendeels, J., Willcox, K.: Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. Int. J. Numer. Methods Fluids 63, 207–230 (2010)

    MathSciNet  MATH  Google Scholar 

  44. D’Elia, M., Dedé, L., Quarteroni, A.: Reduced basis method for parameterized differential algebraic equations. Bol. Soc. Esp. Math. Apl. 46, 45–73 (2009)

    MATH  Google Scholar 

  45. Desai, U., Pal, D.: A transformation approach to stochastic model reduction. IEEE Trans. Autom. Control AC-29 (12), 1097–1100 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Druskin, V., Knizhnerman, L., Simoncini, V.: Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation. SIAM J. Numer. Anal. 49, 1875–1898 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Enns, D.: Model reduction with balanced realization: an error bound and a frequency weighted generalization. In: Proceedings of the 23rd IEEE Conference on Decision and Control (Las Vegas, 1984), pp. 127–132. IEEE, New York (1984)

    Google Scholar 

  49. Estévez Schwarz, D., Tischendorf, C.: Structural analysis for electric circuits and consequences for MNA. Int. J. Circ. Theor. Appl. 28, 131–162 (2000)

    Article  MATH  Google Scholar 

  50. Farle, O., Hill, V., Ingelström, P., Dyczij-Edlinger, R.: Multi-parameter polynomial order reduction of linear finite element models. Math. Comput. Model. Dyn. Syst. 14, 421–434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ferranti, F., Antonini, G., Dhaene, T., Knockaert, L.: Passivity-preserving interpolation-based parameterized model order reduction of PEEC models based on scattered grids. Int. J. Numer. Model. 24 (5), 478–495 (2011)

    Article  MATH  Google Scholar 

  52. Flagg, G.M., Beattie, C.A., Gugercin, S.: Convergence of the iterative rational krylov algorithm. Syst. Control Lett. 61 (6), 688–691 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Freitas, F., Rommes, J., Martins, N.: Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Trans. Power Syst. 23 (3), 1258–1270 (2008)

    Article  Google Scholar 

  54. Freund, R.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123 (1–2), 395–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Freund, R.: Model reduction methods based on Krylov subspaces. Acta Numerica 12, 267–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Freund, R.: The SPRIM algorithm for structure-preserving order reduction of general RCL circuits. Model reduction for circuit simulation. In: Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 25–52. Springer, Dodrecht (2011)

    Chapter  Google Scholar 

  57. Freund, R., Feldmann, P.: The SyMPVL algorithm and its applications in interconnect simulation. In: Proceedings of the 1997 International Conference on Simulation of Semiconductor Processes and Devices, pp. 113–116. Ney York (1997)

    Google Scholar 

  58. Freund, R., Jarre, F.: An extension of the positive real lemma to descriptor systems. Optim. Methods Softw. 19, 69–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Gantmacher, F.: Theory of Matrices. Chelsea Publishing Company, New York (1959)

    MATH  Google Scholar 

  60. Gear, C., Leimkuhler, B., Gupta, G.: Automatic integration of Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12–13, 77–90 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  61. Georgiou, T., Smith, M.: Optimal robustness in the gap metric. IEEE Trans. Autom. Control 35 (6), 673–686 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. Geuss, M., Panzer, H., Lohmann, B.: On parametric model order reduction by matrix interpolation. In: Proceedings of the European Control Conference (Zürich, Switzerland, 17–19 July 2013), pp. 3433–3438 (2013)

    Google Scholar 

  63. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L -error bounds. Int. J. Control 39 (6), 1115–1193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  64. Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore, London (1996)

    MATH  Google Scholar 

  65. Green, M.: Balanced stochastic realizations. Linear Algebra Appl. 98, 211–247 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  66. Green, M.: A relative error bound for balanced stochastic truncation. IEEE Trans. Autom. Control 33, 961–965 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  67. Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77 (8), 748–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. Gugercin, S., Antoulas, A., Beattie, C.: \(\mathcal{H}_{2}\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30 (2), 609–638 (2008)

    Google Scholar 

  69. Gugercin, S., Stykel, T., Wyatt, S.: Model reduction of descriptor systems by interpolatory projection methods. SIAM J. Sci. Comput. 35 (5), B1010–B1033 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. Harshavardhana, P., Jonckheere, E., Silverman, L.: Stochastic balancing and approximation - stability and minimality. IEEE Trans. Autom. Control 29 (8), 744–746 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  71. Heinkenschloss, M., Sorensen, D., Sun, K.: Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30 (2), 1038–1063 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  72. Ho, C.W., Ruehli, A., Brennan, P.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22 (6), 504–509 (1975)

    Article  Google Scholar 

  73. Hossain, M.S., Benner, P.: Generalized inverses of periodic matrix pairs and model reduction for periodic control systems. In: Proceedings of the 1st International Conference on Electrical Engineering and Information and Communication Technology (ICEEICT), Dhaka, Bangladesh, pp. 1–6. IEEE Publications, Piscataway (2014)

    Google Scholar 

  74. Ishihara, J., Terra, M.: On the Lyapunov theorem for singular systems. IEEE Trans. Autom. Control 47 (11), 1926–1930 (2002)

    Article  MathSciNet  Google Scholar 

  75. Jaimoukha, I., Kasenally, E.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31 (1), 227–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  76. Jbilou, K.: ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear Algebra Appl. 432 (10), 2473–2485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. Jbilou, K., Riquet, A.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415 (2–3), 344–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  78. Jonckheere, E., Silverman, L.: A new set of invariants for linear systems with application to reduced order compensator. IEEE Trans. Autom. Control 28 (10), 953–964 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  79. Katayama, T., Minamino, K.: Linear quadratic regulator and spectral factorization for continuous-time descriptor system. In: Proceedings of the 31st IEEE Conference on Decision and Control (Tuscon, 1992), pp. 967–972. IEEE, New York (1992)

    Google Scholar 

  80. Kawamoto, A., Katayama, T.: The semi-stabilizing solution of generalized algebraic Riccati equation for descriptor systems. Automatica 38, 1651–1662 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  81. Kawamoto, A., Takaba, K., Katayama, T.: On the generalized algebraic Riccati equation for continuous-time descriptor systems. Linear Algebra Appl. 296, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  82. Kerler-Back, J., Stykel, T.: Model reduction for linear and nonlinear magneto-quasistatic equations. Int. J. Numer. Methods Eng. (to appear). doi:10.1002/nme.5507

  83. Knizhnerman, L., Simoncini, V.: Convergence analysis of the extended Krylov subspace method for the Lyapunov equation. Numer. Math. 118 (3), 567–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  84. Knockaert, L., De Zutter, D.: Laguerre-SVD reduced-order modeling. IEEE Trans. Microw. Theory Tech. 48 (9), 1469–1475 (2000)

    Article  Google Scholar 

  85. Kowal, P.: Null space of a sparse matrix. MATLAB Central (2006). http://www.mathworks.fr/matlabcentral/fileexchange/11120

  86. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich, Switzerland (2006)

    Book  MATH  Google Scholar 

  87. Larin, V., Aliev, F.: Construction of square root factor for solution of the Lyapunov matrix equation. Syst. Control Lett. 20 (2), 109–112 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  88. Laub, A., Heath, M., Paige, C., Ward, R.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Automat. Control AC-32 (2), 115–122 (1987)

    Article  MATH  Google Scholar 

  89. Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24 (1), 260–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  90. Li, Y., Bai, Z., Su, Y.: A two-directional Arnoldi process and its application to parametric model order reduction. J. Comput. Appl. Math. 226, 10–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  91. Liebermeister, W., Baur, U., Klipp, E.: Biochemical network models simplified by balanced truncation. FEBS J. 272, 4034–4043 (2005)

    Article  Google Scholar 

  92. Liu, W., Sreeram, V.: Model reduction of singular systems. Internat. J. Syst. Sci. 32 (10), 1205–1215 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  93. Mehrmann, V., Stykel, T.: Descriptor systems: a general mathematical framework for modelling, simulation and control. at-Automatisierungstechnik 54 (8), 405–415 (2006)

    Google Scholar 

  94. Meier, III., L., Luenberger, D.: Approximation of linear constant systems. IEEE Trans. Autom. Control AC-12 (10), 585–588 (1967)

    Google Scholar 

  95. Möckel, J., Reis, T., Stykel, T.: Linear-quadratic gaussian balancing for model reduction of differential-algebraic systems. Int. J. Control 84 (10), 1621–1643 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  96. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control AC-26 (1), 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  97. Model Order Reduction Wiki. http://www.modelreduction.org (visited 2015-11-02)

  98. Ober, R.: Balanced parametrization of classes of linear systems. SIAM J. Control Optim. 29 (6), 1251–1287 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  99. Odabasioglu, A., Celik, M., Pileggi, L.: PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Circuits Syst. 17 (8), 645–654 (1998)

    Google Scholar 

  100. Opdenacker, P., Jonckheere, E.: A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds. IEEE Trans. Circuits Syst. I 35 (2), 184–189 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  101. Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation. at-Automatisierungtechnik 58 (8), 475–484 (2010)

    Google Scholar 

  102. Penzl, T.: A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21 (4), 1401–1418 (1999/2000)

    Google Scholar 

  103. Perev, K., Shafai, B.: Balanced realization and model reduction of singular systems. Int. J. Syst. Sci. 25 (6), 1039–1052 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  104. Pernebo, L., Silverman, L.: Model reduction via balanced state space representation. IEEE Trans. Autom. Control AC-27, 382–387 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  105. Phillips, J., Daniel, L., Miguel Silveira, L.: Guaranteed passive balancing transformations for model order reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22, 1027–1041 (2003)

    Article  Google Scholar 

  106. Phillips, J., Miguel Silveira, L.: Poor Man’s TBR: a simple model reduction scheme. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24 (1), 43–55 (2005)

    Article  Google Scholar 

  107. Poloni, F., Reis, T.: A structured doubling algorithm for the numerical solution of Lur’e equations. Preprint 748–2011, DFG Research Center MATHEON, Technische Universität Berlin (2011)

    Google Scholar 

  108. Poloni, F., Reis, T.: A deflation approach for large-scale Lur’e equations. SIAM J. Matrix Anal. Appl. 33 (4), 1339–1368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  109. Reis, T.: Circuit synthesis of passive descriptor systems - a modified nodal approach. Int. J. Circuit Theory Appl. 38 (1), 44–68 (2010)

    Article  MATH  Google Scholar 

  110. Reis, T.: Lur’e equations and even matrix pencils. Linear Algebra Appl. 434 (1), 152–173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  111. Reis, T.: Mathematical modeling and analysis of nonlinear time-invariant RLC circuits. In: Benner, P., Findeisen, R., Flockerzi, D., Reichl, U., Sundmacher, K. (eds.) Large-Scale Networks in Engineering and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, pp. 125–198. Birkhäuser, Basel (2014). Chapter 2

    Google Scholar 

  112. Reis, T., Rendel, O.: Projection-free balanced truncation for differential-algebraic systems. In: Workshop on Model Reduction of Complex Dynamical Systems MODRED 2013, Magdeburg, 13 December 2013

    Google Scholar 

  113. Reis, T., Stykel, T.: Balanced truncation model reduction of second-order systems. Math. Comput. Model. Dyn. Syst. 14 (5), 391–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  114. Reis, T., Stykel, T.: PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29 (9), 1354–1367 (2010)

    Article  Google Scholar 

  115. Reis, T., Stykel, T.: Positive real and bounded real balancing for model reduction of descriptor systems. Int. J. Control 83 (1), 74–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  116. Reis, T., Stykel, T.: Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM J. Appl. Dyn. Syst. 10 (1), 1–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  117. Reis, T., Voigt, M.: Linear-quadratic infinite time horizon optimal control for differential-algebraic equations - a new algebraic criterion. In: Proceedings of the International Symposium on Mathematical Theory of Networks and Systems (MTNS 2012), Melbourne, Australia, 9–13 July 2012 (2012)

    Google Scholar 

  118. Riaza, R.: Differential-Algebraic Systems: Analytical Aspects and Circuit Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack (2008)

    Book  MATH  Google Scholar 

  119. Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control 32 (4), 677–687 (1980). Reprint of Technical Report TR-13, CUED/B-Control, Engineering Department, Cambridge University, 1971

    Google Scholar 

  120. Rommes, J., Martins, N.: Exploiting structure in large-scale electrical circuit and power system problems. Linear Algebra Appl. 431 (3–4), 318–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  121. Rosenbrock, H.: The zeros of a system. Int. J. Control 18 (2), 297–299 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  122. Saad, Y.: Numerical solution of large Lyapunov equations. In: Kaashoek, M., Schuppen, J.V., Ran, A. (eds.) Signal Processing, Scattering, Operator Theory, and Numerical Methods, pp. 503–511. Birkhäuser, Boston (1990)

    Google Scholar 

  123. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996)

    MATH  Google Scholar 

  124. Sabino, J.: Solution of large-scale Lyapunov equations via the block modified Smith method. Ph.D. thesis, Rice University, Houston (2006)

    Google Scholar 

  125. Salimbahrami, B., Lohmann, B.: Order reduction of large scale second-order systems using Krylov subspace methods. Linear Algebra Appl. 415, 385–405 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  126. Schöps, S.: Multiscale modeling and multirate time-integration of field/circuit coupled problems. Ph.D. thesis, Bergische Universität Wuppertal (2011)

    Google Scholar 

  127. Schöps, S., De Gersem, H., Weiland, T.: Winding functions in transient magnetoquasistatic field-circuit coupled simulations. COMPEL 32 (6), 2063–2083 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  128. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29 (3), 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  129. Son, N.: Interpolation based parametric model order reduction. Ph.D. thesis, Universität Bremen, Germany (2012)

    Google Scholar 

  130. Son, N.: A real time procedure for affinely dependent parametric model order reduction using interpolation on Grassmann manifolds. Int. J. Numer. Methods Eng. 93 (8), 818–833 (2013)

    MathSciNet  MATH  Google Scholar 

  131. Son, N., Stykel, T.: Model order reduction of parameterized circuit equations based on interpolation. Adv. Comput. Math. 41 (5), 1321–1342 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  132. Steedhar, J., Van Dooren, P., Misra, P.: Minimal order time invariant representation of periodic descriptor systems. In: Proceedings of the American Control Conference, San Diego, California, June 1999, vol. 2, pp. 1309–1313 (1999)

    Google Scholar 

  133. Stykel, T.: Numerical solution and perturbation theory for generalized Lyapunov equations. Linear Algebra Appl. 349, 155–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  134. Stykel, T.: Gramian-based model reduction for descriptor systems. Math. Control Signals Syst. 16, 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  135. Stykel, T.: Balanced truncation model reduction for semidiscretized Stokes equation. Linear Algebra Appl. 415, 262–289 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  136. Stykel, T.: A modified matrix sign function method for projected Lyapunov equations. Syst. Control Lett. 56, 695–701 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  137. Stykel, T.: Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans. Numer. Anal. 30, 187–202 (2008)

    MathSciNet  MATH  Google Scholar 

  138. Stykel, T.: Balancing-related model reduction of circuit equations using topological structure. In: Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 53–80. Springer, Dodrecht (2011)

    Chapter  Google Scholar 

  139. Stykel, T., Reis, T.: The PABTEC algorithm for passivity-preserving model reduction of circuit equations. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010, Budapest, Hungary, 5–9 July 2010), paper 363. ELTE, Budapest, Hungary (2010)

    Google Scholar 

  140. Stykel, T., Simoncini, V.: Krylov subspace methods for projected Lyapunov equations. Appl. Numer. Math. 62, 35–50 (2012)

    Google Scholar 

  141. Takaba, K., Morihira, N., Katayama, T.: A generalized Lyapunov theorem for descriptor system. Syst. Control Lett. 24, 49–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  142. Tan, S., He, L.: Advanced Model Order Reduction Techniques in VLSI Design. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  143. Tombs, M., Postlethweite, I.: Truncated balanced realization of a stable non-minimal state-space system. Int. J. Control 46 (4), 1319–1330 (1987)

    Article  MATH  Google Scholar 

  144. Uddin, M., Saak, J., Kranz, B., Benner, P.: Computation of a compact state space model for an adaptive spindle head configuration with piezo actuators using balanced truncation. Prod. Eng. Res. Dev. 6 (6), 577–586 (2012)

    Article  Google Scholar 

  145. Unneland, K., Van Dooren, P., Egeland, O.: New schemes for positive real truncation. Model. Identif. Control 28, 53–65 (2007)

    Article  Google Scholar 

  146. Varga, A., Fasol, K.: A new square-root balancing-free stochastic truncation model reduction algorithm. In: Proceedings of 12th IFAC World Congress, Sydney, Australia, vol. 7, pp. 153–156 (1993)

    Google Scholar 

  147. Verghese, G., Lévy, B., Kailath, T.: A generalized state-space for singular systems. IEEE Trans. Autom. Control AC-26 (4), 811–831 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  148. Wachspress, E.: The ADI minimax problem for complex spectra. In: Kincaid, D., Hayes, L. (eds.) Iterative Methods for Large Linear Systems, pp. 251–271. Academic Press, Boston (1990)

    Chapter  Google Scholar 

  149. Wang, H.S., Chang, F.R.: The generalized state-space description of positive realness and bounded realness. In: Proceedings of the 39th IEEE Midwest Symposium on Circuits and Systems, vol. 2, pp. 893–896. IEEE, New York (1996)

    Google Scholar 

  150. Wang, H.S., Yung, C.F., Chang, F.R.: Bounded real lemma and H control for descriptor systems. In: IEE Proceedings on Control Theory and Applications, vol. 145, pp. 316–322. IEE, Stevenage (1998)

    Google Scholar 

  151. Wang, H.S., Yung, C.F., Chang, F.R.: The positive real control problem and the generalized algebraic Riccati equation for descriptor systems. J. Chin. Inst. Eng. 24 (2), 203–220 (2001)

    Article  Google Scholar 

  152. Willcox, K., Lassaux, G.: Model reduction of an actively controlled supersonic diffuser. In: Benner, P., Mehrmann, V., Sorensen, D. (eds.) Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45, pp. 357–361. Springer, Berlin, Heidelberg (2005). Chapter 20

    Chapter  Google Scholar 

  153. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (11), 2323–2330 (2002)

    Article  Google Scholar 

  154. Xin, X.: Strong solutions and maximal solutions of generalized algebraic Riccati equations. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 528–533. IEEE, Piscataway (2008)

    Google Scholar 

  155. Yan, B., Tan, S.D., McGaughy, B.: Second-order balanced truncation for passive-order reduction of RLCK circuits. IEEE Trans. Circuits Syst. II 55 (9), 942–946 (2008)

    Article  Google Scholar 

  156. Zhang, L., Lam, J., Xu, S.: On positive realness of descriptor systems. IEEE Trans. Circuits Syst. 49 (3), 401–407 (2002)

    Article  MathSciNet  Google Scholar 

  157. Zhang, Z., Wong, N.: An efficient projector-based passivity test for descriptor systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29 (8), 1203–1214 (2010)

    Article  Google Scholar 

  158. Zhou, K.: Error bounds for frequency weighted balanced truncation and relative error model reduction. In: Proceedings of the IEEE Conference on Decision and Control (San Antonio, Texas, December 1993), pp. 3347–3352 (1993)

    Google Scholar 

  159. Zhou, K.: Frequency-weighted \(\mathcal{L}_{\infty }\) norm and optimal Hankel norm model reduction. IEEE Trans. Autom. Control 40, 1687–1699 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support by the collaborative project nanoCOPS: “Nanoelectronic COupled Problems Solutions” funded by the European Union in the FP7-ICT-2013-11 Program under Grant Agreement Number 619166.

The second author was supported by the Research Network KoSMos: Model reduction based simulation of coupled PDAE systems funded by the German Federal Ministry of Education and Science (BMBF), grant 05M13WAA, and by the project Model reduction for elastic multibody systems with moving interactions funded by the German Research Foundation (DFG), grant STY 58/1–2.

The authors gratefully acknowledge the careful proofreading by a reviewer and the editors which greatly enhanced the presentation of this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Benner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Benner, P., Stykel, T. (2017). Model Order Reduction for Differential-Algebraic Equations: A Survey. In: Ilchmann, A., Reis, T. (eds) Surveys in Differential-Algebraic Equations IV. Differential-Algebraic Equations Forum. Springer, Cham. https://doi.org/10.1007/978-3-319-46618-7_3

Download citation

Publish with us

Policies and ethics