Woven Natural Fiber Fabric Reinforced Biodegradable Composite: Processing, Properties and Application

  • M. R. Nurul Fazita
  • M. J. Nurnadia
  • H. P. S. Abdul KhalilEmail author
  • M. K. Mohamad Haafiz
  • H. M. Fizree
  • N. L. M. Suraya
Part of the Green Energy and Technology book series (GREEN)


In recent years, the use of biodegradable polymers has become more popular due to the increasing awareness of the environmental impacts of petroleum-based plastics. The most feasible way toward having eco-friendly composites is the use of biodegradable polymer composite reinforced with natural fibers such as bamboo, kenaf, jute, sisal, ramie, flax and hemp. The research on natural fiber reinforced composites has generally been focused on the use of short fibers. Woven fabric has been employed in various applications which include aerospace, automotive parts and structural reinforcement due to their high strength and stiffness. Although there is less study being conducted regarding biodegradable polymer composites reinforced with natural fiber woven fabric, natural fibers possess many benefits when used as fabric, for instance, ease in handling of fibers and also the provision of homogenous distribution for the matrix and reinforcing fiber. Thus, this chapter is concerned with the processing, properties and applications of woven natural fiber fabric reinforced biodegradable composites.


Woven fabric Natural fiber Biodegradable polymers Biocomposites 


  1. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mat Des 42:353–368. doi:
  2. Alms JB, Yonko PJ, McDowell RC, Advani SG (2009) Design and development of I-beam from natural composites. J Biobased Mat Bioenergy 3(2):181–187CrossRefGoogle Scholar
  3. Alves C, Ferrão PMC, Silva AJ, Reis LG, Freitas M, Rodrigues LB, Alves DE (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18(4):313–327. doi:
  4. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864. doi: 10.1002/mabi.200400043 CrossRefGoogle Scholar
  5. Baghaei B, Skrifvars M (2016) Characterisation of polylactic acid biocomposites made from prepregs composed of woven polylactic acid/hemp–lyocell hybrid yarn fabrics. Compos A: Appl Sci Manuf 81:139–144. doi:
  6. Barkoula NM, Garkhail SK, Peijs T (2010) Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind Crops Prod 31(1):34–42. doi:
  7. Bastarrachea L, Dhawan S, Sablani SS, Mah JH, Kang DH, Zhang J, Tang J (2010) Biodegradable poly (butylene adipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against listeria innocua. J Food Sci 75(4):E215–E224CrossRefGoogle Scholar
  8. Behera AK, Avancha S, Basak RK, Sen R, Adhikari B (2012) Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohydr Polym 88(1):329–335. doi:
  9. Ben G, Kihara Y (2007) Development and evaluation of mechanical properties for kenaf fibers/PLA composites. Key Eng Mater 334–335:489–492CrossRefGoogle Scholar
  10. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A Appl Sci Manuf 40(4):404–412. doi: 10.1016/j.compositesa.2009.01.002 CrossRefGoogle Scholar
  11. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67(3–4):462–470. doi:
  12. Campbell FC (2010) Thermoplastic composite fabrication processes. Struct Compos Mat, ASM International, USAGoogle Scholar
  13. Cengiz TG, Babalık FC (2009) The effects of ramie blended car seat covers on thermal comfort during road trials. Int J Indus Ergon 39(2):287–294. doi:
  14. Chabba S, Netravalli AN (2005) ‘Green’ composites part 1: characterization of flax fabric and gluteraldehyde modified soy protein concentrate composites. J Mat Sci 40:6263–6273CrossRefGoogle Scholar
  15. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110(6):621–632. doi: 10.1016/j.jbiosc.2010.07.014 CrossRefGoogle Scholar
  16. Chen G-Q (2010) Introduction of bacterial plastics PHA, PLA, PBS, PE, PTT, and PPP plastics from bacteria. In: Chen GG-Q (ed) Microbiology monographs, vol 14. Springer, Berlin, pp 1–16. doi: 10.1007/978-3-642-03287-5_1
  17. Cristaldi G, Latteri A, Recca G, Cicala G (2010) Composites based on natural fibre fabrics. In: Dubrovski PD (ed) Woven fabric engineering. SciyoGoogle Scholar
  18. Duhovic M, Peterson S, Jayaraman K (2008) Natural-fibre-biodegradable polymers composites for packaging. Properties and performance of natural-fibre composites. Woodhead Publishing Limited, EnglandGoogle Scholar
  19. Dweib MA, Hu B, O’Donnell A, Shenton HW, Wool RP (2004) All natural composite sandwich beams for structural applications. Compos Struct 63(2):147–157. doi:–8223(03)00143-0
  20. El-Sabbagh A (2014) Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Compos Part B: Eng 57(0):126–135. doi:
  21. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mat Eng 299(1):9–26. doi: 10.1002/mame.201300008
  22. Flieger M, Kantorová M, Prell A, Řezanka T, Votruba J (2003) Biodegradable plastics from renewable sources. Folia Microbiol 48(1):27–44. doi: 10.1007/bf02931273
  23. Foulk J, Chao W, Akin D, Dodd R, Layton P (2006) Analysis of flax and cotton fiber fabric blends and recycled polyethylene composites. J Polym Environ 14(1):15–25. doi: 10.1007/s10924-005-8703-1
  24. Guo W, Tao J, Yang C, Song C, Geng W, Li Q, Wang Y, Kong M, Wang S (2012) Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers. PLoS ONE 7(5):e38341. doi: 10.1371/journal.pone.0038341
  25. Hamad K, Kaseem M, Deri F (2011) Effect of recycling on rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. J Mat Sci 46(9):3013–3019. doi: 10.1007/s10853-010-5179-8 CrossRefGoogle Scholar
  26. Hariharan ABA, Abdul Khalil HPS (2005) Lignocellulose-based hybrid bilayer laminate composite: part I—studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin. J Compos Mater 39(8):663–684. doi: 10.1177/0021998305047267 CrossRefGoogle Scholar
  27. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86. doi: 10.1007/s11837-006-0234-2 CrossRefGoogle Scholar
  28. Huang X, Netravali A (2007) Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos Sci Technol 67(10):2005–2014. doi:
  29. Jacquel N, Freyermouth F, Fenouillot F, Rousseau A, Pascault JP, Fuertes P, Saint-Loup R (2011) Synthesis and properties of poly (butylene succinate): efficiency of different transesterification catalysts. J Polym Sci, Part A: Polym Chem 49(24):5301–5312CrossRefGoogle Scholar
  30. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18. doi: 10.1016/j.carbpol.2011.04.043 CrossRefGoogle Scholar
  31. Jayaramudu J, Reddy GSM, Varaprasad K, Sadiku ER, Ray SS, Rajulu AV (2013) Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites. Carbohydr Polym 94(2):822–828. doi:
  32. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends. Biomacromolecules 7(1):199–207CrossRefGoogle Scholar
  33. Kawabata S (1989) Nonlinear mechanics of woven and knitted materials. In: Chou TW, FK Ko (ed) Textile structural composites, vol 3. Elsevier Science Publishers, Amsterdam, pp 67–116Google Scholar
  34. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B: Eng 44(1):120–127. doi:
  35. Kostic M, Pejic B, Skundric P (2008) Quality of chemically modified hemp fibers. Bioresour Technol 99(1):94–99. doi: 10.1016/j.biortech.2006.11.050 CrossRefGoogle Scholar
  36. Kulma A, Skórkowska-Telichowska K, Kostyn K, Szatkowski M, Skała J, Drulis-Kawa Z, Preisner M, Żuk M, Szperlik J, Wang YF, Szopa J (2015) New flax producing bioplastic fibers for medical purposes. Ind Crops Prod 68:80–89. doi: 10.1016/j.indcrop.2014.09.013 CrossRefGoogle Scholar
  37. Le Moigne N, Longerey M, Taulemesse JM, Bénézet JC, Bergeret A (2014) Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494. doi: 10.1016/j.indcrop.2013.11.022 CrossRefGoogle Scholar
  38. Lee JT, Kim MW, Song YS, Kang TJ, Youn JR (2010) Mechanical properties of denim fabric reinforced poly(lactic acid). Fibers Polym 11(1):60–66. doi: 10.1007/s12221-010-0060-6 CrossRefGoogle Scholar
  39. Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos A Appl Sci Manuf 37(1):80–91. doi: 10.1016/j.compositesa.2005.04.015 CrossRefGoogle Scholar
  40. Li Y, Mai Y-W, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055. doi: 10.1016/S0266-3538(00)00101-9 CrossRefGoogle Scholar
  41. Li LJ, Wang YP, Wang G, Cheng HT, Han XJ (2010) Evaluation of properties of natural bamboo fibre for application in summer textiles. J Fiber Bioeng Inform 3:94–99CrossRefGoogle Scholar
  42. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fibers Polym 9(6):735–739. doi: 10.1007/s12221-008-0115-0 CrossRefGoogle Scholar
  43. Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94(1):90–94Google Scholar
  44. Long AC (2005) Composite manufacturing-thermoplastic. Design and Manufacture of Textile Composites. Woodhead Publishing Limited, CambridgeCrossRefGoogle Scholar
  45. Mass E (2009) Bamboo textiles: green, luxurious and practical. Accessed 30 May 2011
  46. Miao M, Finn N (2008) Conversion of natural fibres into structural composites. J Text Eng 54(6):165–177CrossRefGoogle Scholar
  47. Michel AT, Billington SL (2012) Characterization of poly-hydroxybutyrate films and hemp fiber reinforced composites exposed to accelerated weathering. Polym Degrad Stab 97(6):870–878. doi:
  48. Mohanty AK, Khan, Mubarak A, Hinrichsen G (2000) Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites. Compos Sci Tech 60(7):1115–1124. doi:
  49. Mousa MH, Dong Y, Davies IJ (2016) Recent advances in bionanocomposites: preparation, properties and applications. Int J Polym Mat Polym Biomat 65(5):225–254CrossRefGoogle Scholar
  50. Nam S, Netravalli AN (2006) Green Composites I. Physical properties of ramie fibers for environment-friendly green composites. Fibers Polym 7(4):372–379CrossRefGoogle Scholar
  51. NatureWorks LLC (2011) Accessed 19 October 2011
  52. Nurul Fazita MR, Jayaraman K, Bhattacharyya D (2013) A performance study on composites made from bamboo fabric and poly(lactic acid). J Reinf Plast Compos 32(20):1513–1525. doi: 10.1177/0731684413498296 CrossRefGoogle Scholar
  53. Nurul Fazita MR, Jayaraman K, Bhattacharyya D (2014) Bamboo fabric reinforced polypropylene and poly(lactic acid) for packaging applications: impact, thermal, and physical properties. Polym Compos 35(10):1888–1899. doi: 10.1002/pc.22845 CrossRefGoogle Scholar
  54. Oksman K, Wallström L, Berglund LA, Filho RDT (2002) Morphology and mechanical properties of unidirectional sisal-epoxy composites. J Appl Polym Sci 84(13):2358–2365. doi: 10.1002/app.10475 CrossRefGoogle Scholar
  55. Olesen PO, Plackett DV (1997) Perspective on the performance of natural plant fibres. Paper presented at the natural fibres performance forum, Copenhagen, Denmark, 27–28 May 1999Google Scholar
  56. Patagonia (2014) On bamboo and rayon. Accessed 17 Jan 2014
  57. Peterson KS (2006) Formability and degradation of woodfibre-biopolymer composite materials. The University of Auckland, AucklandGoogle Scholar
  58. Phongam N, Dangtungee R, Siengchin S (2015) Comparative studies on the mechanical properties of nonwoven- and woven-flax-fiber-reinforced poly(butylene adipate-co-terephthalate)-based composite laminates. Mech Compos Mater 51:17–24. doi: 10.1007/s11029-015-9472-0
  59. Porras A, Maranon A (2012) Development and characterization of a Laminate composite material from polylactic acid (PLA) and woven bamboo fabric. Compos B Eng 43(7):2782–2788. doi: 10.1016/j.compositesb.2012.04.039 CrossRefGoogle Scholar
  60. Porras A, Maranon A, Ashcroft IA (2016) Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina. Compos A: Appl Sci Manuf 81:105–110. doi:
  61. Ren P, Shen T, Wang F, Wang X, Zhang Z (2009) Study on biodegradable starch/OMMT nanocomposites for packaging applications. J Polym Environ 17(3):203–207. doi: 10.1007/s10924-009-0139-6 CrossRefGoogle Scholar
  62. Rowell RM (2008) Natural fibres: types and properties. In: Pickering KL (ed) Properties and performance of natural-fibre composites. Woodhead Publishing Ltd, Cambridge, pp 3–66CrossRefGoogle Scholar
  63. Rwawiire S, Tomkova B, Militky J, Jabbar AK, Bandu M (2015) Development of a biocomposite based on green epoxy polymer and natural cellulose fabric (bark cloth) for automotive instrument panel applications. Compos B Eng 81:149–157. doi: 10.1016/j.compositesb.2015.06.021 CrossRefGoogle Scholar
  64. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363. doi: 10.1002/(sici)1098-2329(199924)18:4<351:aid-adv6>;2-x CrossRefGoogle Scholar
  65. Shah DU, Schubel PJ, Clifford MJ (2013) Modelling the effect of yarn twist of the tensile strength of unidirectional plant fibre yarn composites. J Compos Mater 47(4):425–436CrossRefGoogle Scholar
  66. Shahid ul I, Shahid M, Mohammad F (2013) Perspectives for natural product based agents derived from industrial plants in textile applications—a review. J Clean Prod 57:2–18. doi:
  67. Smith R (2005) Biodegradable polymers for industrial applications CRC Press. Florida, Boca RatonCrossRefGoogle Scholar
  68. Song YSL, Lee JT, Ji DS, Kim MW, Lee SH, Youn JR (2012) Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid) composites. Compos Part B: Eng 43(3):856–860. doi: 10.1016/j.compositesb.2011.10.021
  69. Sreekumar PA (2008) Matrices for natural-fibre reinforced composites. In: Pickering KL (ed) Properties and performance of natural-fibre composite. Woodhead Publication Ltd, CambridgeGoogle Scholar
  70. Tajvidi M, Takemura A (2010) Thermal Degradation of Natural Fiber-reinforced Polypropylene Composites. J Thermoplast Compos Mater 23(3):281–298. doi: 10.1177/0892705709347063 CrossRefGoogle Scholar
  71. Thilagavathi G, Pradeep E, Kannaian T, Sasikala L (2010) Development of natural fiber nonwovens for application as car interiors for noise control. J Ind Text 39(3):267–278. doi: 10.1177/1528083709347124 CrossRefGoogle Scholar
  72. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264. doi: 10.1016/S0266-3538(03)00096-4 CrossRefGoogle Scholar
  73. Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5(11):1149–1163. doi: 10.1002/biot.201000136 CrossRefGoogle Scholar
  74. Yueping W, Ge W, Haitao C, Genlin T, Zheng L, Feng XQ, Xiangqi Z, Xiaojun H, Xushan G (2010) Structures of bamboo fiber for textiles. Text Res J 80(4):334–343. doi: 10.1177/0040517509337633 CrossRefGoogle Scholar
  75. Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Clean Prod 15(11–12):1032–1040. doi: 10.1016/j.jclepro.2006.05.036 CrossRefGoogle Scholar
  76. Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly (lactic acid) blends. J Nanomat 2010:4Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. R. Nurul Fazita
    • 1
  • M. J. Nurnadia
    • 1
  • H. P. S. Abdul Khalil
    • 1
    • 2
    Email author
  • M. K. Mohamad Haafiz
    • 1
  • H. M. Fizree
    • 1
  • N. L. M. Suraya
    • 1
  1. 1.Schools of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Cluster for Polymer Composites Science and Engineering Research CenterUniversity Sains MalaysiaPenangMalaysia

Personalised recommendations