Advertisement

Tribological Characteristics of Green Biocomposites

  • Boon Peng Chang
  • H. Md AkilEmail author
  • M. H. Zamri
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Owning to the environmental concerns and sustainable development, green biocomposites are increasingly explored and developed to replace conventional composites. Polymer composites used in tribological application have received great attention from researchers due to its self-lubricating properties, versatile fabrication process, low in cost and easy to tailor their properties with wide range of functional fillers. The past research in using green biodegradable materials reinforced polymers in tribological study has established a good understanding on tribological behaviour of natural fibre-reinforced polymer composites (NFRPCs). In this chapter, the tribological performance of various natural fibres reinforced polymer composites reported in the literature is reviewed. Furthermore, the effect of different important factors of natural fibre on wear and friction of polymers is discussed. Most of the polymer materials showing certain degree of enhancement in tribological properties after reinforced with natural fibre. Further optimization of its performance is possible by selecting optimum fibre loading, fibre length, fibre treatment, sliding orientation and combining with other fillers to form hybrid system composites. Finally, based on our current understanding, we have speculated some future trends and directions of NFRPCs in the field of tribology.

Keywords

Natural fibre Biocomposites Tribology 

Notes

Acknowledgments

The authors would like to acknowledge the KDU Penang University College Internal Research Grant and Universiti Sains Malaysia (USM) grant particularly the Cluster of Polymer Composites (CPC) Funds (Grant Number: 203/PBAHAN/6071337) for the financial assistance that has resulted in this work. The authors would also like to appreciate the permissions granted by various publishers and authors to reproduce figures and tables in this chapter.

References

  1. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300(1):10–24CrossRefGoogle Scholar
  2. Ahmed KS, Vijayaragan S (2006) Elastic property evaluation of jute-glass fibre hybrid composite using experimental and CLT approach. Indian J Eng Mat Sci 13(5):435Google Scholar
  3. Ahmed KS, Vijayarangan S, Kumar A (2007) Low velocity impact damage characterization of woven jute—glass fabric reinforced isothalic polyester hybrid composites. J Reinf Plast Compos 26(10):959–976. doi: 10.1177/0731684407079414 CrossRefGoogle Scholar
  4. Aji IS, Zainudin ES, Khalina A, Sapuan S, Khairul M (2011) Studying the effect of fiber size and fiber loading on the mechanical properties of hybridized kenaf/PALF-reinforced HDPE composite. J Reinf Plast Compos 30(6):546–553CrossRefGoogle Scholar
  5. Alam AKMM, Mina MF, Beg MDH, Mamun AA, Bledzki AK, Shubhra QTH (2014) Thermo-mechanical and morphological properties of short natural fiber reinforced poly (lactic acid) biocomposite: effect of fiber treatment. Fibers Polym 15(6):1303–1309. doi: 10.1007/s12221-014-1303-8 CrossRefGoogle Scholar
  6. Aldousiri B, Shalwan A, Chin CW (2013) A review on tribological behaviour of polymeric composites and future reinforcements. Adv Mat Sci Eng 2013:8. doi: 10.1155/2013/645923 Google Scholar
  7. Ali A, Shaker K, Nawab Y, Jabbar M, Hussain T, Militky J, Baheti V (2016) Hydrophobic treatment of natural fibers and their composites—a review. J Ind Text. doi: 10.1177/1528083716654468 Google Scholar
  8. Arbelaiz A, Fernández B, Valea A, Mondragon I (2006) Mechanical properties of short flax fibre bundle/poly (ε-caprolactone) composites: influence of matrix modification and fibre content. Carbohydr Polym 64(2):224–232CrossRefGoogle Scholar
  9. Ashok Kumar M, Ramachandra Reddy G, Siva Bharathi Y, Venkata Naidu S, Naga Prasad Naidu V (2010) Frictional coefficient, hardness, impact strength, and chemical resistance of reinforced sisal-glass fiber epoxy hybrid composites. J Compos Mater 44(26):3195–3202. doi: 10.1177/0021998310371551 CrossRefGoogle Scholar
  10. Aurrekoetxea J, Sarrionandia M, Gómez X (2008) Effects of microstructure on wear behaviour of wood reinforced polypropylene composite. Wear 265(5–6): 606–611. doi: 10.1016/j.wear.2007.12.013
  11. Bahadur S, Schwartz CJ (2008) The influence of nanoparticle fillers in polymer matrices on the formation and stability of transfer film during wear. Tribol Interface Eng Ser 55:17–34CrossRefGoogle Scholar
  12. Bahadur S, Sunkara C (2005) Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO2, ZnO. CuO and SiC. Wear 258(9):1411–1421CrossRefGoogle Scholar
  13. Bajpai PK, Singh I, Madaan J (2013) Tribological behavior of natural fiber reinforced PLA composites. Wear 297(1–2):829–840. doi: 10.1016/j.wear.2012.10.019
  14. Barari B, Omrani E, Dorri Moghadam A, Menezes PL, Pillai KM, Rohatgi PK (2016) Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the ‘Green’ composite. Carbohydr Polym 147:282–293. doi: 10.1016/j.carbpol.2016.03.097
  15. Beckermann G, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos A Appl Sci Manuf 39(6):979–988CrossRefGoogle Scholar
  16. Bhardwaj R, Mohanty AK, Drzal L, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7(6):2044–2051CrossRefGoogle Scholar
  17. Biswas S, Xess PA (2012) Erosion wear behaviour of bamboo/glass fibre reinforced epoxy based hybrid composites. International Conference on Mechanical & Industrial Engineering, Darjeeling, West Bengal, India, 27 May 2012Google Scholar
  18. Boopathi L, Sampath PS, Mylsamy K (2012) Influence of fiber length in the wear behaviour of borassus fruit fiber reinforced epoxy composites. Int J Eng Sci Technol 4:4119–4129 Google Scholar
  19. Briscoe B, Sinha S (2002) Wear of polymers. Proc Inst Mech Eng, Part J: J Eng Tribol 216(6):401–413CrossRefGoogle Scholar
  20. Chand N, Dwivedi UK (2006) Effect of coupling agent on abrasive wear behaviour of chopped jute fibre-reinforced polypropylene composites. Wear 261(10):1057–1063. doi: 10.1016/j.wear.2006.01.039
  21. Chand N, Dwivedi UK (2007a) High stress abrasive wear study on bamboo. J Mater Process Technol 183(2):155–159. doi: 10.1016/j.jmatprotec.2006.09.036 CrossRefGoogle Scholar
  22. Chand N, Dwivedi UK (2007b) Influence of fiber orientation on high stress wear behavior of sisal fiber-reinforced epoxy composites. Polym Compos 28(4):437–441. doi: 10.1002/pc.20286 CrossRefGoogle Scholar
  23. Chand N, Fahim M (2008) Tribology of natural fiber polymer composites. Elsevier, New YorkGoogle Scholar
  24. Chang L, Zhang Z, Ye L, Friedrich K (2007) Tribological properties of high temperature resistant polymer composites with fine particles. Tribol Int 40(7):1170–1178CrossRefGoogle Scholar
  25. Chang L, Zhang Z, Ye L, Friedrich K (2008) Synergistic effects of nanoparticles and traditional tribo-fillers on sliding wear of polymeric hybrid composites. Tribol Interface Eng Ser 55:35–61CrossRefGoogle Scholar
  26. Chin CW, Yousif BF (2009) Potential of kenaf fibres as reinforcement for tribological applications. Wear 267(9–10):1550–1557. doi: 10.1016/j.wear.2009.06.002
  27. Cicala G, Cristaldi G, Recca G, Latteri A (2010) Composites based on natural fiber fabrics. In: Dubrovski PD (ed) Woven Fabric Engineering, InTech. doi: 10.5772/10465. Available from http://www.intechopen.com/books/woven-fabric-engineering/composites-based-on-natural-fibre-fabrics
  28. Czigány T (2006) Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos Sci Technol 66(16):3210–3220. doi: 10.1016/j.compscitech.2005.07.007
  29. Divya GS, Ananad K, Suresha B (2014) Wear behaviour of coir reinforced treated and untreated hybrid composites. Int J Innov Res Develop 4:632–639. www.ijird.com
  30. Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos Part B: Eng 56:717–723. doi: 10.1016/j.compositesb.2013.09.012
  31. Dwivedi UK, Chand N (2009) Influence of MA-g-PP on abrasive wear behaviour of chopped sisal fibre reinforced polypropylene composites. J Mat Process Technol 209(12–13):5371–5375. doi: 10.1016/j.jmatprotec.2009.04.008
  32. El-Sayed AA, El-Sherbiny MG, Abo-El-Ezz AS, Aggag GA (1995) Friction and wear properties of polymeric composite materials for bearing applications. Wear 184(1):45–53. doi: 10.1016/0043-1648(94)06546-2
  33. El-Tayeb NSM (2008a) Abrasive wear performance of untreated SCF reinforced polymer composite. J Mat Process Technol 206(1–3):305–314. doi: 10.1016/j.jmatprotec.2007.12.028
  34. El-Tayeb NSM (2008b) A study on the potential of sugarcane fibers/polyester composite for tribological applications. Wear 265(1–2):223–235. doi: 10.1016/j.wear.2007.10.006
  35. El-Tayeb NSM (2009) Two-body abrasive behaviour of untreated SC and R-G fibres polyester composites. Wear 266(1–2):220–232. doi: 10.1016/j.wear.2008.06.018
  36. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596CrossRefGoogle Scholar
  37. Fervel V, Mischler S, Landolt D (2003) Lubricating properties of cotton transfer films studied with a pin-on-disc apparatus. Wear 254(5–6):492–500. doi: 10.1016/S0043-1648(03)00131-5
  38. Fong T, Saba N, Liew C, De Silva R, Hoque ME, Goh K (2015) Yarn flax fibres for polymer-coated sutures and hand layup polymer composite laminates. In: Manufacturing of natural fibre reinforced polymer composites. Springer, Berlin, pp 155–175Google Scholar
  39. Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology, environmental credentials and market forces. J Sci Food Agric 86(12):1781–1789. doi: 10.1002/jsfa.2558
  40. Friedrich K (1993) Advances in composites tribology. Composite materials series, vol 8. Elsevier, NetherlandsGoogle Scholar
  41. Friedrich K, Schlarb AK (2011) Tribology of polymeric nanocomposites: friction and wear of bulk materials and coatings, vol 55. Elsevier, NetherlandsGoogle Scholar
  42. Friedrich K, Zhang Z, Schlarb AK (2005) Effects of various fillers on the sliding wear of polymer composites. Compos Sci Technol 65(15):2329–2343CrossRefGoogle Scholar
  43. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84CrossRefGoogle Scholar
  44. Goriparthi BK, Suman KNS, Mohan Rao N (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A: Appl Sci Manuf 43(10):1800–1808. doi: 10.1016/j.compositesa.2012.05.007
  45. Hashmi SAR, Dwivedi UK, Chand N (2006) Friction and sliding wear of UHMWPE modified cotton fibre reinforced polyester composites. Tribol Lett 21(2):79–87. doi: 10.1007/s11249-006-9014-y CrossRefGoogle Scholar
  46. Hashmi SAR, Dwivedi UK, Chand N (2007) Graphite modified cotton fibre reinforced polyester composites under sliding wear conditions. Wear 262(11–12):1426–1432. doi: 10.1016/j.wear.2007.01.014
  47. Hill K, Swiecki B, Cregger J (2012) The bio-based materials automotive value chain. Cent Automot Res 112Google Scholar
  48. Hinchcliffe SA, Hess KM, Srubar Iii WV (2016) Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Compos Part B: Eng 95:346–354. doi: 10.1016/j.compositesb.2016.03.089
  49. Ibrahim R (2016) Influence of natural fillers on tribological and mechanical performance of polyester composites. J Egypt Soc Tribol 13(1):43–53Google Scholar
  50. Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS (2012) Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites. Compos Part B: Eng 43(5):2434–2438. doi: 10.1016/j.compositesb.2011.11.003
  51. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr Polym 86(1):1–18. doi: 10.1016/j.carbpol.2011.04.043
  52. Jawaid M, Khalil HA, Bakar AA, Khanam PN (2011) Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater Des 32(2):1014–1019CrossRefGoogle Scholar
  53. Khanam PN, Reddy MM, Raghu K, John K, Naidu SV (2007) Tensile, flexural and compressive properties of sisal/silk hybrid composites. J Reinf Plast Compos 26(10):1065–1070CrossRefGoogle Scholar
  54. Kim HS, Lee BH, Lee S, Kim HJ, Dorgan JR (2011) Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim 104(1):331–338. doi: 10.1007/s10973-010-1098-9 CrossRefGoogle Scholar
  55. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B Eng 44(1):120–127CrossRefGoogle Scholar
  56. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B: Eng 42(4):856–873. doi: 10.1016/j.compositesb.2011.01.010
  57. Lhymn C, Tempelmeyer KE, Davis PK (1985) The abrasive wear of short fibre composites. Composites 16(2):127–136. doi: 10.1016/0010-4361(85)90619-6
  58. Lv J, Zeng D, Wei C (2015) Mechanical and wear properties of sisal fiber cellulose microcrystal reinforced unsaturated polyester composites. Adv Polym Technol 34(2):21483–21490. doi: 10.1002/adv.21483
  59. Majhi S, Samantarai S, Acharya S (2012) Tribological behavior of modified rice husk filled epoxy composite. Int J Sci Eng Res 3:1–5Google Scholar
  60. Makhtar AK, Yussof H, Al-Assadi H, Yee LC, Ghani MAA, Salleh Z, Hyie KM, Berhan MN, Taib YMD, Bakri MAI (2012) International symposium on robotics and intelligent sensors 2012 (IRIS 2012) mechanical properties of Kenaf/fiberglass polyester hybrid composite. Procedia Eng 41:1654–1659. doi: 10.1016/j.proeng.2012.07.364
  61. McMullen P (1984) Fibre/resin composites for aircraft primary structures: a short history, 1936–1984. Composites 15(3):222–230CrossRefGoogle Scholar
  62. Mishra P, Acharya S (2010) Anisotropy abrasive wear behavior of bagasse fiber reinforced polymer composite. Int J Eng, Sci Technol 2(11)Google Scholar
  63. Mishra S, Mohanty AK, Drzal LT, Misra M, Parija S, Nayak SK, Tripathy SS (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol 63(10):1377–1385. doi: 10.1016/S0266-3538(03)00084-8
  64. Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:15. doi: 10.1155/2015/243947 CrossRefGoogle Scholar
  65. Mohanty JR, Das SN, Das HC (2014) Effect of fiber content on abrasive wear behavior of date palm leaf reinforced polyvinyl pyrrolidone composite. ISRN Tribology 2014:10. doi: 10.1155/2014/453924 CrossRefGoogle Scholar
  66. Mohanty S, Verma SK, Nayak SK, Tripathy SS (2004) Influence of fiber treatment on the performance of sisal–polypropylene composites. J Appl Polym Sci 94(3):1336–1345. doi: 10.1002/app.21161 CrossRefGoogle Scholar
  67. Mutlu I (2009) Investigation of tribological properties of brake pads by using rice straw and rice husk dust. J Appl Sci 9(2):377–381CrossRefGoogle Scholar
  68. Mylsamy K, Rajendran I (2011) Influence of fibre length on the wear behaviour of chopped agave americana fibre reinforced epoxy composites. Tribol Lett 44(1):75–80. doi: 10.1007/s11249-011-9829-z CrossRefGoogle Scholar
  69. Nayak SK (2009) Degradation and flammability behavior of PP/banana and glass fiber-based hybrid composites. Int J Plast Technol 13(1):47–67CrossRefGoogle Scholar
  70. Nguong C, Lee S, Sujan D (2013) A review on natural fibre reinforced polymer composites. In: Proceedings of world academy of science, engineering and technology, vol 73. World Academy of Science, Engineering and Technology (WASET), p 1123Google Scholar
  71. Nirmal U, Hashim J, Megat Ahmad MMH (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Int 83:77–104. doi: 10.1016/j.triboint.2014.11.003
  72. Nirmal U, Yousif BF, Rilling D, Brevern PV (2010) Effect of betelnut fibres treatment and contact conditions on adhesive wear and frictional performance of polyester composites. Wear 268(11–12):1354–1370. doi: 10.1016/j.wear.2010.02.004
  73. Nur Suraya Mustafar WJWM (2016) Natural fiber composite usage towards sustainability. Malaysian Foresight Institute (myForesight)_Posted on November 17 2014. http://www.myforesight.my/2014/11/17/natural-fiber-composite-usage-towards-sustainability/. Accessed 20 June 2016
  74. Nuthong W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) 10th Eco-Energy and Materials Science and Engineering Symposium Impact Property of Flexible Epoxy Treated Natural Fiber Reinforced PLA Composites. Energy Procedia 34:839–847. doi: 10.1016/j.egypro.2013.06.820
  75. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63(9):1317–1324. doi: 10.1016/S0266-3538(03)00103-9
  76. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A: Appl Sci Manuf 40(4):469–475. doi: 10.1016/j.compositesa.2009.01.012
  77. Omrani E, Menezes PL, Rohatgi PK (2016) State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Eng Sci Technol Int J 19(2):717–736. doi: 10.1016/j.jestch.2015.10.007
  78. Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos Part B: Eng 73:132–138. doi: 10.1016/j.compositesb.2014.12.022
  79. Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A (2016) The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Compos Part A: Appl Sci Manuf 84:186–195. doi: 10.1016/j.compositesa.2016.01.021
  80. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A: Appl Sci Manuf 83:98–112. doi: 10.1016/j.compositesa.2015.08.038
  81. Rajesh G, Prasad AVR (2014) Tensile properties of successive alkali treated short jute fiber reinforced PLA composites. Procedia Mat Sci 5:2188–2196. doi: 10.1016/j.mspro.2014.07.425
  82. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162CrossRefGoogle Scholar
  83. Riccieri JE, Vázquez A, De Carvalho LH (1999) Interfacial properties and initial step of the water sorption in unidirectional unsaturated polyester/vegetable fiber composites. Polym Compos 20(1):29–37. doi: 10.1002/pc.10332 CrossRefGoogle Scholar
  84. Saba N, Jawaid M, Alothman OY, Paridah M (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159CrossRefGoogle Scholar
  85. Sabeel Ahmed K, Khalid SS, Mallinatha V, Amith Kumar SJ (2012) Dry sliding wear behavior of SiC/Al2O3 filled jute/epoxy composites. Mat Des 36:306–315. doi: 10.1016/j.matdes.2011.11.010
  86. Saheb DN, Jog J (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363. doi: 10.1002/(SICI)1098-2329(199924)18:4<351:AID-ADV6>3.0.CO;2-X CrossRefGoogle Scholar
  87. Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mat Des 48:14–24. doi: 10.1016/j.matdes.2012.07.014
  88. Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Part A: Appl Sci Manuf 39(4):640–646. doi: 10.1016/j.compositesa.2007.10.021
  89. Shuhimi FF, Abdollah MFB, Kalam MA, Hassan M, Mustafa Ae, Amiruddin H (2016) Tribological characteristics comparison for oil palm fibre/epoxy and kenaf fibre/epoxy composites under dry sliding conditions. Tribol Int 101:247–254. doi: 10.1016/j.triboint.2016.04.020
  90. Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 54:425–429CrossRefGoogle Scholar
  91. Singh N, Yousif BF, Rilling D (2011) Tribological characteristics of sustainable fiber-reinforced thermoplastic composites under wet adhesive wear. Tribol Trans 54(5):736–748. doi: 10.1080/10402004.2011.597544 CrossRefGoogle Scholar
  92. Sinha SK, Briscoe BJ (2009) Polymer tribology, vol 697. World Scientific, SingaporeGoogle Scholar
  93. Srivastava V, Pathak J (1996) Friction and wear properties of bushing bearing of graphite filled short glass fibre composites in dry sliding. Wear 197(1):145–150CrossRefGoogle Scholar
  94. Stachowiak GW (2006) Wear: materials, mechanisms and practice. Wiley, USAGoogle Scholar
  95. Sukmawan R, Takagi H, Nakagaito AN (2016) Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Compos Part B: Eng 84:9–16. doi: 10.1016/j.compositesb.2015.08.072
  96. Supreeth S, Vinod B, Sudev DLJ (2014) Influence of fiber length on the tribological behaviour of short PALF reinforced bisphenol-A composite. Int J Eng Res General Sci 2(4):825–830Google Scholar
  97. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7):1187–1192CrossRefGoogle Scholar
  98. Thiruchitrambalam M, Alavudeen A, Athijayamani A, Venkateshwaran N, Perumal AE (2009) Improving mechanical properties of banana/kenaf polyester hybrid composites using sodium laulryl sulfate treatment. Mater Phys Mech 8:165–173Google Scholar
  99. Thomas S, Pothan LA (2009) Natural fibre reinforced polymer composites: from macro to nanoscale. Archives contemporainesGoogle Scholar
  100. Thwe MM, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63(3–4):375–387. doi: 10.1016/S0266-3538(02)00225-7
  101. Ticoalu A, Aravinthan T, Cardona F (2010) A review of current development in natural fiber composites for structural and infrastructure applications. In: Proceedings of the southern region engineering conference (SREC 2010). Engineers Australia, pp 113–117Google Scholar
  102. Tilborg H (2009) Why natural fibres? http://naturalfibres2009.org/en/iynf/index.html. 2016
  103. Venkateshwaran N, Elaya Perumal A, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mat Des 47:151–159. doi: 10.1016/j.matdes.2012.12.001
  104. Venkateshwaran N, ElayaPerumal A, Alavudeen A, Thiruchitrambalam M (2011) Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater Des 32(7):4017–4021CrossRefGoogle Scholar
  105. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264. doi: 10.1016/S0266-3538(03)00096-4
  106. Wambua P, Vangrimde B, Lomov S, Verpoest I (2007) The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Compos Struct 77(2):232–240. doi: 10.1016/j.compstruct.2005.07.006
  107. Wei C, Zeng M, Xiong X, Liu H, Luo K, Liu T (2015) Friction properties of sisal fiber/nano-silica reinforced phenol formaldehyde composites. Polym Compos 36(3):433–438. doi: 10.1002/pc.22957 CrossRefGoogle Scholar
  108. Xavior MA, Yarlagadda PKDV, Yallew TB, Kumar P, Singh I (2014) “12th global congress on manufacturing and management” GCMM—2014 sliding wear properties of jute fabric reinforced polypropylene composites. Procedia Eng 97:402–411. doi: 10.1016/j.proeng.2014.12.264
  109. Xue Q-J, Wang Q-H (1997) Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC. Wear 213(1):54–58CrossRefGoogle Scholar
  110. Yousif B, El-Tayeb N (2007a) The effect of oil palm fibers as reinforcement on tribological performance of polyester composite. Surf Rev Lett 14(06):1095–1102CrossRefGoogle Scholar
  111. Yousif B, El-Tayeb N (2007b) On the effect of woven glass fabric orientations on wear and friction properties of polyester composite. Surf Rev Lett 14(03):489–497CrossRefGoogle Scholar
  112. Yousif B, Gill NS, Lau ST, Devadas A (2008) The potential of using betelnut fibres for tribo-polyester composites considering three different orientations. In: ASME 2008 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, pp 79–84Google Scholar
  113. Yousif B, Leong OB, Ong LK, Jye WK (2009) The effect of treatment on tribo-performance of CFRP composites. Recent Patents Mat Sci 2(1):67–74CrossRefGoogle Scholar
  114. Yousif BF, El-Tayeb NSM (2008) Adhesive wear performance of T-OPRP and UT-OPRP composites. Tribol Lett 32(3):199–208. doi: 10.1007/s11249-008-9381-7 CrossRefGoogle Scholar
  115. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A: Appl Sci Manuf 41(4):499–505. doi: 10.1016/j.compositesa.2009.12.006
  116. Zhang H-J, Zhang Z-Z, Guo F, Liu W-M (2009) Friction and wear behavior of the hybrid PTFE/cotton fabric composites filled with TiO2 nanoparticles and modified TiO2 nanoparticles. Polym Eng Sci 49(1):115–122. doi: 10.1002/pen.21228 CrossRefGoogle Scholar
  117. Zhong LX, Fu SY, Zhou XS, Zhan HY (2011) Effect of surface microfibrillation of sisal fibre on the mechanical properties of sisal/aramid fibre hybrid composites. Compos Part A: Appl Sci Manuf 42(3):244–252. doi: 10.1016/j.compositesa.2010.11.010
  118. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Engineering Computing and Built EnvironmentKDU Penang University CollegeGeorgetownMalaysia
  2. 2.School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaPenangMalaysia
  3. 3.Cluster of Polymer Composite (CPC) Science and Engineering Research Centre (SERC) Engineering CampusUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations