Advertisement

Manufacturing of Natural Fiber/Agrowaste Based Polymer Composites

  • Debora Puglia
  • Fabrizio Sarasini
  • Carlo SantulliEmail author
  • José M. Kenny
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Most recently, there has been an increasing interest for the production of laminates for semi-structural applications using sustainable materials. In this field, a possible option is the use of composites including ligno-cellulosic fibers, which are normally obtained as by-products from the textile industry, therefore mainly in the form of fabric or mats. Despite a reasonably large amount of studies on thermosetting composites reinforced with vegetable fibers also exist, in the view to replace fiberglass e.g., in the automotive industry, it is clear on the other side that the evolution of natural fiber composites has a much stronger drive towards the use of thermoplastic matrices and possibly biodegradable ones. Moreover, in terms of life cycle analysis (LCA), it is recommendable that both matrix and fiber are obtained from by-products or even better waste from an industrial or agricultural process, so that their use may represent as such a reduction in the environmental impact of the whole process. Therefore, this chapter discusses first the opportunities offered and challenges encountered in the production of natural fiber composites, then concentrating on the possibilities to obtain a polymer matrix alternative to petrol-based ones, especially in the particular case of manufacturing biopolymers by using agrowaste as received or with limited structural transformations rather than simply as a monomer (e.g., dextrose) source for polymer synthesis.

Keywords

Lignocellulosic fibers Natural fiber composites Thermoplastic starch Biobased thermosets 

References

  1. Abdelmouleh M, Boufi S, Belgacem M, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639. doi: 10.1016/j.compscitech.2006.07.003
  2. Adekunle K, Akesson D, Skrifvars M (2010) Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J Appl Polym Sci. doi: 10.1002/app.31634
  3. Andjelkovic DD, Larock RC (2006) Novel rubbers from cationic copolymerization of soybean oils and dicyclopentadiene. 1. Synthesis and characterization. Biomacromolecules 7(3):927–936. doi: 10.1021/bm050787r CrossRefGoogle Scholar
  4. Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56(2):111–122. doi: 10.1016/j.carbpol.2003.11.015 CrossRefGoogle Scholar
  5. Avérous L, Fringant C, Moro L (2001a) Plasticized starch–cellulose interactions in polysaccharide composites. Polymer 42(15):6565–6572. doi: 10.1016/S0032-3861(01)00125-2 CrossRefGoogle Scholar
  6. Avérous L, Fringant C, Moro L (2001b) Starch-based biodegradable materials suitable for thermoforming packaging. Starch—Stärke 53(8):368. doi: 10.1002/1521-379X(200108)53:8<368:AID-STAR368>3.0.CO;2-W CrossRefGoogle Scholar
  7. Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—polyester resin matrix. Compos Sci Technol 64(9):1219–1230. doi: 10.1016/j.compscitech.2003.10.001 CrossRefGoogle Scholar
  8. Barbosa V, Ramires EC, Razera IAT, Frollini E (2010) Biobased composites from tannin–phenolic polymers reinforced with coir fibers. Ind Crops Prod 32(3):305–312. doi: 10.1016/j.indcrop.2010.05.007 CrossRefGoogle Scholar
  9. Barreto ACH, Esmeraldo MA, Rosa DS, Fechine PBA, Mazzetto SE (2010) Cardanol biocomposites reinforced with jute fiber: microstructure, biodegradability, and mechanical properties. Polym Compos 31(11):1928–1937. doi: 10.1002/pc.20990 CrossRefGoogle Scholar
  10. Barreto ACH, Rosa DS, Fechine PBA, Mazzetto SE (2011) Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos A Appl Sci Manuf 42(5):492–500. doi: 10.1016/j.compositesa.2011.01.008 CrossRefGoogle Scholar
  11. Barreto ACH, Junior AEC, Freitas JEB, Rosa DS, Barcellos WM, Freire FNA et al (2012) Biocomposites from dwarf-green Brazilian coconut impregnated with cashew nut shell liquid resin. J Compos Mater. doi: 10.1177/0021998312441041
  12. Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75. doi: 10.1163/1568554053542188 CrossRefGoogle Scholar
  13. Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger J et al (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem (International ed. in English) 39(13):2206–2224Google Scholar
  14. Bisanda ET, Ogola W, Tesha J (2003) Characterisation of tannin resin blends for particle board applications. Cem Concr Compos 25(6):593–598. doi: 10.1016/S0958-9465(02)00072-0 CrossRefGoogle Scholar
  15. Boquillon N (2006) Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites. J Appl Polym Sci 101(6):4037–4043. doi: 10.1002/app.23133 CrossRefGoogle Scholar
  16. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169. doi: 10.1016/j.carbpol.2013.01.033 CrossRefGoogle Scholar
  17. Campaner P, D’Amico D, Ferri P, Longo L, Maffezzoli A, Stifani C, Tarzia A (2010) Cardanol based matrix for jute reinforced pipes. Macromol Symp 296(1):526–530. doi: 10.1002/masy.201051069 CrossRefGoogle Scholar
  18. Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos A Appl Sci Manuf 37(3):423–429. doi: 10.1016/j.compositesa.2005.05.045 CrossRefGoogle Scholar
  19. Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510. doi: 10.3144/expresspolymlett.2008.60 CrossRefGoogle Scholar
  20. Chang PR, Jian R, Zheng P, Yu J, Ma X (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79(2):301–305. doi: 10.1016/j.carbpol.2009.08.007 CrossRefGoogle Scholar
  21. Chen Y, Zhang L, Deng R, Liang H (2006) Toughened composites prepared from castor oil based polyurethane and soy dreg by a one-step reactive extrusion process. J Appl Polym Sci 101(2):953–960. doi: 10.1002/app.24023 CrossRefGoogle Scholar
  22. Curvelo A (2001) Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydr Polym 45(2):183–188. doi: 10.1016/S0144-8617(00)00314-3 CrossRefGoogle Scholar
  23. Da Silva Santos R, de Souza AA, De Paoli M-A, de Souza CML (2010) Cardanol–formaldehyde thermoset composites reinforced with buriti fibers: preparation and characterization. Compos A Appl Sci Manuf 41(9):1123–1129. doi: 10.1016/j.compositesa.2010.04.010 CrossRefGoogle Scholar
  24. De Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78(3):422–431. doi: 10.1016/j.carbpol.2009.04.034
  25. De Teixeira EM, Curvelo AAS, Corrêa AC, Marconcini JM, Glenn GM, Mattoso LHC (2012) Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind Crops Prod 37(1):61–68. doi: 10.1016/j.indcrop.2011.11.036
  26. Derksen JTP, Cuperus FP, Kolster P (1996) Renewable resources in coatings technology: a review. Prog Org Coat 27(1–4):45–53. doi: 10.1016/0300-9440(95)00518-8 CrossRefGoogle Scholar
  27. Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31(8):2693–2696. doi: 10.1021/ma971532b CrossRefGoogle Scholar
  28. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092. doi: 10.1002/(SICI)1097-4628(20000628)76:14<2080:AID-APP12>3.0.CO;2-U CrossRefGoogle Scholar
  29. Dutta S, Karak N, Baruah S (2010) Jute-fiber-reinforced polyurethane green composites based on Mesua ferrea L. seed oil. J Appl Polym Sci 115(2):843–850. doi: 10.1002/app.30357 CrossRefGoogle Scholar
  30. Dweib MA, Hu B, Shenton HW, Wool RP (2006) Bio-based composite roof structure: manufacturing and processing issues. Compos Struct 74(4):379–388. doi: 10.1016/j.compstruct.2005.04.018 CrossRefGoogle Scholar
  31. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003 CrossRefGoogle Scholar
  32. Faulstich de Paiva JM, Frollini E (2006) Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromol Mater Eng 291(4):405–417. doi: 10.1002/mame.200500334 CrossRefGoogle Scholar
  33. Francucci G, Vázquez A, Ruiz E, Rodríguez ES (2012) Capillary effects in vacuum-assisted resin transfer molding with natural fibers. Polym Compos 33(9):1593–1602. doi: 10.1002/pc.22290 CrossRefGoogle Scholar
  34. Frollini E, Oliveira FB, Ramires EC, Barbosa V Jr (2008) Composites based on tannins: production, process and usesGoogle Scholar
  35. Funke U, Bergthaller W, Lindhauer MG (1998) Processing and characterization of biodegradable products based on starch. Polym Degrad Stab 59(1–3):293–296. doi: 10.1016/S0141-3910(97)00163-8 CrossRefGoogle Scholar
  36. Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52(3–4):259–320. doi: 10.1080/15583724.2012.705409 CrossRefGoogle Scholar
  37. Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C (2012) Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr Polym 87(3):2068–2075. doi: 10.1016/j.carbpol.2011.10.027 CrossRefGoogle Scholar
  38. Gassan J, Bledzki AK (2001) Thermal degradation of flax and jute fibers. J Appl Polym Sci 82(6):1417–1422. doi: 10.1002/app.1979 CrossRefGoogle Scholar
  39. Ghassemi H, Schiraldi DA (2014) Thermoplastic elastomers derived from bio-based monomers. J Appl Polym Sci 131(3). doi: 10.1002/app.39815
  40. Gironès J, López JP, Mutjé P, Carvalho AJF, Curvelo AAS, Vilaseca F (2012) Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos Sci Technol 72(7):858–863. doi: 10.1016/j.compscitech.2012.02.019 CrossRefGoogle Scholar
  41. Gopalakrishnan S, Linda FT (2011) Bio-based thermosetting tough polyurethanes. Der Chem Sin 2(5):54–64Google Scholar
  42. Haq M, Burgueño R, Mohanty AK, Misra M (2008) Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos Sci Technol 68(15–16):3344–3351. doi: 10.1016/j.compscitech.2008.09.007 CrossRefGoogle Scholar
  43. Herrmann AS, Nickel J, Riedel U (1998) Construction materials based upon biologically renewable resources—from components to finished parts. Polym Degrad Stab 59(1–3):251–261. doi: 10.1016/S0141-3910(97)00169-9 CrossRefGoogle Scholar
  44. Ho M, Wang H, Lee J-H, Ho C, Lau K, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos B Eng 43(8):3549–3562. doi: 10.1016/j.compositesb.2011.10.001 CrossRefGoogle Scholar
  45. Hu B, Dweib M, Wool RP, Shenton HW (2007) Bio-based composite roof for residential construction. J Archit Eng 13(3):136–143. doi: 10.1061/(ASCE)1076-0431(2007)13:3(136) CrossRefGoogle Scholar
  46. Jenck JF, Agterberg F, Droescher MJ (2004) Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem 6(11):544. doi: 10.1039/b406854h CrossRefGoogle Scholar
  47. John J, Bhattacharya M, Turner RB (2002) Characterization of polyurethane foams from soybean oil. J Appl Polym Sci 86(12):3097–3107. doi: 10.1002/app.11322 CrossRefGoogle Scholar
  48. Kaewtatip K, Thongmee J (2012) Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Mater Des 40:314–318. doi: 10.1016/j.matdes.2012.03.053 CrossRefGoogle Scholar
  49. Kaewtatip K, Thongmee J (2014) Preparation of thermoplastic starch/treated bagasse fiber composites. Starch—Stärke 66(7–8):724–728. doi: 10.1002/star.201400005 CrossRefGoogle Scholar
  50. Kaplan DL (ed) (1998) Biopolymers from renewable resources. Springer, New YorkGoogle Scholar
  51. Keener T, Stuart R, Brown T (2004) Maleated coupling agents for natural fibre composites. Compos A Appl Sci Manuf 35(3):357–362. doi: 10.1016/j.compositesa.2003.09.014 CrossRefGoogle Scholar
  52. Khalil HA, Tehrani M, Davoudpour Y, Bhat A, Jawaid M, Hassan A (2013) Natural fiber reinforced poly(vinyl chloride) composites: a review. J Reinf Plast Compos 32(5):330–356. doi: 10.1177/0731684412458553 CrossRefGoogle Scholar
  53. Kim H-S, Yang H-S, Kim H-J, Lee B-J, Hwang T-S (2005) Thermal properties of agro-flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim 81(2):299–306. doi: 10.1007/s10973-005-0782-7 CrossRefGoogle Scholar
  54. Kong C, Park H, Lee J (2014) Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding. Mater Lett 130:21–25. doi: 10.1016/j.matlet.2014.05.042 CrossRefGoogle Scholar
  55. Kouisni L, Fang Y, Paleologou M, Ahvazi B, Hawari J, Zhang Y, Wang XM (2011) Kraft lignin recovery and its use in the preparation of lignin-based phenol formaldehyde resins for plywood. Cellul Chem Technol 45(7–8):515–520Google Scholar
  56. Kozak N, Lobko E (2012) Bottom-up nanostructured segmented polyurethanes with immobilized in situ transition and rare-earth metal chelate compounds—polymer topology—structure and properties relationship, polyurethane, Dr. Fahmina Zafar (ed). InTech. doi: 10.5772/48002, ISBN 978-953-51-0726-2
  57. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B 42(4):856–873CrossRefGoogle Scholar
  58. Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171. doi: 10.1007/s10853-007-1699-2 CrossRefGoogle Scholar
  59. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290. doi: 10.1016/j.progpolymsci.2013.11.004 CrossRefGoogle Scholar
  60. Leblanc N, Saiter JM (2009) Characterization of bulk agro-green composites: sisal fiber reinforced wheat flour thermoplastics. Polym Compos. doi: 10.1002/pc.20877
  61. Lee K-Y, Wong LLC, Blaker JJ, Hodgkinson JM, Bismarck A (2011) Bio-based macroporous polymer nanocomposites made by mechanical frothing of acrylated epoxidised soybean oil. Green Chem 13(11):3117. doi: 10.1039/c1gc15655a CrossRefGoogle Scholar
  62. Lin S, Huang J, Chang PR, Wei S, Xu Y, Zhang Q (2013) Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydr Polym 95(1):91–99. doi: 10.1016/j.carbpol.2013.02.023 CrossRefGoogle Scholar
  63. Liu Z, Erhan SZ (2008) “Green” composites and nanocomposites from soybean oil. Mater Sci Eng A 483–484:708–711. doi: 10.1016/j.msea.2006.12.186 CrossRefGoogle Scholar
  64. Liu Z, Erhan SZ, Akin DE, Barton FE (2006) “Green” composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites. J Agric Food Chem 54(6):2134–2137. doi: 10.1021/jf0526745 CrossRefGoogle Scholar
  65. Liu W, Drzal LT, Mohanty AK, Misra M (2007) Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Compos B Eng 38(3):352–359. doi: 10.1016/j.compositesb.2006.05.003 CrossRefGoogle Scholar
  66. Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34(12):1348–1368. doi: 10.1016/j.progpolymsci.2009.07.001 CrossRefGoogle Scholar
  67. Lligadas G, Ronda JC, Galià M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11(11):2825–2835. doi: 10.1021/bm100839x CrossRefGoogle Scholar
  68. Lochab B, Shukla S, Varma IK (2014) Naturally occurring phenolic sources: monomers and polymers. RSC Adv 4:21712Google Scholar
  69. Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 63(2):198–204. doi: 10.1016/j.carbpol.2005.08.027 CrossRefGoogle Scholar
  70. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296. doi: 10.1016/j.polymer.2008.01.028 CrossRefGoogle Scholar
  71. Lubi MC, Thachil ET (2007) Particleboard from cashew nut shell liquid. Polym Polym Compos 15:75–82Google Scholar
  72. Maffezzoli A, Calò E, Zurlo S, Mele G, Tarzia A, Stifani C (2004) Cardanol based matrix biocomposites reinforced with natural fibres. Compos Sci Technol 64(6):839–845. doi: 10.1016/j.compscitech.2003.09.010 CrossRefGoogle Scholar
  73. Mahendran AR, Wuzella G, Aust N, Muller U, Kandelbauer A (2013) Processing and characterization of natural fibre reinforced composites using lignin phenolic binder. Polym Polym Compos 21(4):199–205Google Scholar
  74. Mansouri NEEl, Yuan Q, Huang F (2011) Synthesis and characterization of kraft lignin-based epoxy resins. BioResources. doi: 10.15376/biores.6.3.2492-2503
  75. Masoodi R, Pillai KM (2012) A study on moisture absorption and swelling in bio-based jute-epoxy composites. J Reinf Plast Compos 31(5):285–294. doi: 10.1177/0731684411434654 CrossRefGoogle Scholar
  76. Masoodi R, El-Hajjar RF, Pillai KM, Sabo R (2012) Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 36:570–576. doi: 10.1016/j.matdes.2011.11.042 CrossRefGoogle Scholar
  77. Matyjaszewski K, Möller M (eds) (2012) Polymer science: a comprehensive reference. Elsevier B.V, AmsterdamGoogle Scholar
  78. Mazumdar S (2001) Composites manufacturing: materials, product, and process engineering. CRC Press, Boca RatonGoogle Scholar
  79. Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788. doi: 10.1039/b703294c CrossRefGoogle Scholar
  80. Merlini C, Soldi V, Barra GMO (2011) Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polym Test 30(8):833–840. doi: 10.1016/j.polymertesting.2011.08.008 CrossRefGoogle Scholar
  81. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343. doi: 10.1163/156855401753255422 CrossRefGoogle Scholar
  82. Mosiewicki MA, Casado U, Marcovich NE, Aranguren MI (2008) Vegetable oil based-polymers reinforced with wood flour. Mol Cryst Liquid Cryst 484(1):143/[509]–150/[516]. doi: 10.1080/15421400801904344
  83. Müssig J (2008) Cotton fibre-reinforced thermosets versus ramie composites: a comparative study using petrochemical- and agro-based resins. J Polym Environ 16(2):94–102. doi: 10.1007/s10924-008-0089-4 CrossRefGoogle Scholar
  84. Ofem MI, Umar M, Ovat FA (2012) Mechanical properties of rice husk filed cashew nut shell liquid resin composites. J Mater Sci Res 1(4):p89. doi: 10.5539/jmsr.v1n4p89 Google Scholar
  85. Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89(2):327–335. doi: 10.1016/j.polymdegradstab.2005.01.016
  86. Park S-J, Jin F-L, Lee J-R (2004) Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun 25(6):724–727. doi: 10.1002/marc.200300191 CrossRefGoogle Scholar
  87. Pfister DP, Larock RC (2012) Cationically cured natural oil-based green composites: effect of the natural oil and the agricultural fiber. J Appl Polym Sci 123(3):1392–1400. doi: 10.1002/app.33636 CrossRefGoogle Scholar
  88. Phillips S, Kuo P-K, Demaria C, Lessarda L, Yan N, Hubert P, Sain M (2013) Development of multi-scale biocomposites from flax, nanocellulose and epoxy by resin infusion. In: NIPMMP Conference. Montreal, QuebecGoogle Scholar
  89. Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41(22):8682–8687. doi: 10.1021/ma8020213 CrossRefGoogle Scholar
  90. Quirino RL, Garrison TF, Kessler MR (2014) Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chem 16(4):1700. doi: 10.1039/c3gc41811a CrossRefGoogle Scholar
  91. Ramires EC, Frollini E (2012) Tannin–phenolic resins: synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers Composites: Part B 43:2851–2860Google Scholar
  92. Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509. doi: 10.1016/j.progpolymsci.2010.01.001 CrossRefGoogle Scholar
  93. Raston C (2005) Renewables and green chemistry. Green Chem 7(2):57CrossRefGoogle Scholar
  94. Richardson MO, Zhang Z (2000) Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos A Appl Sci Manuf 31(12):1303–1310. doi: 10.1016/S1359-835X(00)00008-7 CrossRefGoogle Scholar
  95. Rodriguez E, Giacomelli F, Vazquez A (2004) Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements. J Compos Mater 38(3):259–268. doi: 10.1177/0021998304039269 CrossRefGoogle Scholar
  96. Rösch J, Mülhaupt R (1993) Polymers from renewable resources: polyester resins and blends based upon anhydride-cured epoxidized soybean oil. Polym Bull 31(6):679–685CrossRefGoogle Scholar
  97. Sarkar S, Adhikari B (2001) Jute felt composite from lignin modified phenolic resin. Polym Compos 22(4):518–527. doi: 10.1002/pc.10556 CrossRefGoogle Scholar
  98. Sharma V, Kundu PP (2006) Addition polymers from natural oils—a review. Prog Polym Sci 31(11):983–1008. doi: 10.1016/j.progpolymsci.2006.09.003 CrossRefGoogle Scholar
  99. Shibata M, Nakai K (2010) Preparation and properties of biocomposites composed of bio-based epoxy resin, tannic acid, and microfibrillated cellulose. J Polym Sci Part B Polym Phys 48(4):425–433. doi: 10.1002/polb.21903 CrossRefGoogle Scholar
  100. Singha AS, Rana RK (2012) Natural fiber reinforced polystyrene composites: effect of fiber loading, fiber dimensions and surface modification on mechanical properties. Mater Des 41:289–297. doi: 10.1016/j.matdes.2012.05.001 CrossRefGoogle Scholar
  101. Spontón M, Casis N, Mazo P, Raud B, Simonetta A, Ríos L, Estenoz D (2013) Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from castor oil. Int Biodeterior Biodegradation 85:85–94Google Scholar
  102. Stewart D (2008a) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27(2):202–207. doi: 10.1016/j.indcrop.2007.07.008 CrossRefGoogle Scholar
  103. Stewart R (2008b) Going green: eco-friendly materials and recycling on growth paths. Plast Eng 64(1):16–23Google Scholar
  104. Sun G, Sun H, Liu Y, Zhao B, Zhu N, Hu K (2007) Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system. Polymer 48(1):330–337. doi: 10.1016/j.polymer.2006.10.047 CrossRefGoogle Scholar
  105. Tang D, Macosko CW, Hillmyer MA (2014) Thermoplastic polyurethane elastomers from bio-based poly(δ-decalactone) diols. Polym Chem 5(9):3231. doi: 10.1039/c3py01120h CrossRefGoogle Scholar
  106. Tiamiyu AO, Ibitoye SA (2012) Effect of clay addition on service properties of a developed OPF–CNSL–formaldehyde roofing material. Constr Build Mater 36:358–364. doi: 10.1016/j.conbuildmat.2012.04.130 CrossRefGoogle Scholar
  107. Van den Oever MJA, Bos HL, van Kemenade MJJM (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7(5–6):387–402. doi: 10.1023/A:1026594324947 CrossRefGoogle Scholar
  108. Van Voorn B, Smit HH, Sinke R, de Klerk B (2001) Natural fibre reinforced sheet moulding compound. Compos A Appl Sci Manuf 32(9):1271–1279. doi: 10.1016/S1359-835X(01)00085-9 CrossRefGoogle Scholar
  109. Visakh PM, Thomas S, Chandra AK, Mathew AP (eds) (2013) Advances in elastomers II, vol 12. Springer, Berlin. doi: 10.1007/978-3-642-20928-4
  110. Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5(9):3142. doi: 10.1039/c3py01194a CrossRefGoogle Scholar
  111. Wang R, Schuman TP (2013) Vegetable oil-derived epoxy monomers and polymer blends: a comparative study with review. Express Polym Lett 7(3):272–292CrossRefGoogle Scholar
  112. Wang R, Ma J, Zhou X, Wang Z, Kang H, Zhang L et al (2012) Design and preparation of a novel cross-linkable, high molecular weight, and bio-based elastomer by emulsion polymerization. Macromolecules 45(17):6830–6839. doi: 10.1021/ma301183k
  113. Wik VM, Aranguren MI, Mosiewicki MA (2011) Castor oil-based polyurethanes containing cellulose nanocrystals. Polym Eng Sci 51(7):1389–1396. doi: 10.1002/pen.21939 CrossRefGoogle Scholar
  114. Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432Google Scholar
  115. Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crops Prod 8(2):105–112. doi: 10.1016/S0926-6690(97)10015-2 CrossRefGoogle Scholar
  116. Xie F, Halley PJ, Avérous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37(4):595–623. doi: 10.1016/j.progpolymsci.2011.07.002 CrossRefGoogle Scholar
  117. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628. doi: 10.1016/j.progpolymsci.2013.05.002 CrossRefGoogle Scholar
  118. Yeganeh H, Mehdizadeh MR (2004) Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol. Eur Polym J 40(6):1233–1238. doi: 10.1016/j.eurpolymj.2003.12.013 CrossRefGoogle Scholar
  119. Yin Q, Yang W, Sun C, Di M (2012) Preparation and properties of lignin epoxy resin composite. BioResources. doi: 10.15376/biores.7.4.5737-5748
  120. Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT et al (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A Appl Sci Manuf 38(6):1569–1580. doi: 10.1016/j.compositesa.2007.01.001
  121. Zhu L, Wool RP (2006) Nanoclay reinforced bio-based elastomers: synthesis and characterization. Polymer 47(24):8106–8115. doi: 10.1016/j.polymer.2006.07.076 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Debora Puglia
    • 1
  • Fabrizio Sarasini
    • 2
  • Carlo Santulli
    • 3
    Email author
  • José M. Kenny
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversità di PerugiaTerniItaly
  2. 2.Department of Chemical Engineering Materials EnvironmentSapienza Università di RomaRomeItaly
  3. 3.School of Architecture and DesignUniversità di CamerinoAscoli PicenoItaly

Personalised recommendations