Recent Progress on Rubber Based Biocomposites: From Carbon Nanotubes to Ionic Liquids

  • Imran KhanEmail author
  • Mohd Amil Usmani
  • Aamir H. Bhat
  • Jahangir Ahmad Rather
  • Syed Imran Hassan
  • Abdul Mumam
Part of the Green Energy and Technology book series (GREEN)


Currently, reinforcement of a polymer matrix via the integration of fillers is a common industrial exercise which improves the properties of the composite material. Rubber nanocomposites (NCs) demonstrated remarkable properties due to the interaction between the polymer and filler and the homogeneous dispersion of the filler within the polymer matrix. These improved properties included increased stiffness, high strength, reduced elongation to failure, improved resistance to crack growth and tearing and finally various modifications of abrasion, dynamic and fatigue properties, due to their high surface area and significant aspect ratios. Different reinforcing fillers have been incorporated in the rubber to develop elastomeric composites having improved properties. This current chapter focus on development, properties and applications of various elastomeric composites. Secondly, this chapter also emphasis on ionic liquids (ILs) role as additives in elastomer composites as well as effects of nanofillers on elastomer composites.


Rubber Nanocomposites Carbon nanotubes Ionic liquids 



1-Allyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide


Chloroprene rubber


Carbon Black


1-Ethyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide


1-Ethyl-3-Methylimidazolium Thiocynate


Hydrogenated Nitrile Rubber


1-Hexyl-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide






Multiwalled Carbon Nanotubes






Natural Rubber


Acrylonitrile–Butadiene Rubber


Nitrile Rubber


Silicon Carbide


Styrene Butadiene Rubber


Single-Walled Carbon Nanotubes


Glass Transition Temperature


Carboxylated Styrene Butadiene Rubber



The author’s are thankful to their respective universities for providing internet facilities for collecting the research paper.


  1. Abrate S (1986) The mechanics of short fiber-reinforced composites: a review. Rubber Chem Technol 59:384CrossRefGoogle Scholar
  2. Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104:276–283CrossRefGoogle Scholar
  3. Ahir SV, Squires AM, Tajbakhsh AR, Terentjev EM (2006) Infrared actuation in aligned polymer-nanotube composites. Phys Rev B 73(8):085420CrossRefGoogle Scholar
  4. Al-Yamani F, Goettler LA (2007) Nanoscale rubber reinforcement: a route to enhanced intercalation in rubber-silicate nanocomposites. Rubber Chem Technol 80(1):100Google Scholar
  5. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37CrossRefGoogle Scholar
  6. Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35(12):1008–1017CrossRefGoogle Scholar
  7. Anmin H, Xiaoping W, Demin J, Yanmei L (2007) Thermal stability and aging characteristics of HNBR/clay nanocomposites in air, water and oil at elevated temperature. e-Polymers 51:1–11Google Scholar
  8. Anuar H, Ahmad S, Rasid R, Ahmad A, Busu W (2008) Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J Appl Polym Sci 107(6):4043–4052CrossRefGoogle Scholar
  9. Armand MEF, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629CrossRefGoogle Scholar
  10. Arumugam N, Tamareselvy K, Venkata Rao K, Rajalingam P (1989) Coconut-fiber-reinforced rubber composites. J Appl Polym Sci 37:2645–2659CrossRefGoogle Scholar
  11. Bana R, Banthia AK (2009) Preparation and characterisation of green nanocomposites of biodegradable poly(vinyl-alcohol-co-ethylene) and wood dust. Pigm Resin Technol 38(5):275–279CrossRefGoogle Scholar
  12. Barrer RM, Barrie JA, Rogers MG (1963) Heterogenous membranes: diffusion in filled rubber. J Polym Sci A Polym Chem 1:2565–2586Google Scholar
  13. Bastiurea M, Rodeanu MS, Dima D (2015) Thermal andmechanical properties of polyester composites with graphene oxide and graphite. Dig J Nanomater Bios 10(2):521–533Google Scholar
  14. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792CrossRefGoogle Scholar
  15. Benes M, Goettler LA (2002) Improved properties of short fiber rubber composites through nanoscale co-reinforcement. ACS Rubber Division, Savannah, Georgia, USA. April 29–May 1, Paper No. 5Google Scholar
  16. Bhattacharya TB, Biswas AK, Chaterjee J, Pramanick D (1986) Short pineapple leaf fibre reinforced rubber composites. Plast Rubbers Process Appl 6:119–125Google Scholar
  17. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920CrossRefGoogle Scholar
  18. Bokobza L, Belin C (2007) Effect of strain on the properties of a styrene-butadiene rubber filled with multiwall carbon nanotubes. J Appl Polym Sci 105(4):2054–2061CrossRefGoogle Scholar
  19. Bokobza L, Kolodziej M (2006) On the use of carbon nanotubes as reinforcing fillers for elastomeric materials. Polym Int 55(9):1090–1098CrossRefGoogle Scholar
  20. Brody GS (1997) On the safety of breast implants. Plast Reconstr Surg 100:1314CrossRefGoogle Scholar
  21. Buffa F, Abraham GA, Grady BP, Resasco D (2007) Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. J Polym Sci B Polym Phys 45(4):490–501CrossRefGoogle Scholar
  22. Cataldo F (2007) Preparation and properties of nanostructured rubber composites with montmorillonite. Macromol Symp 247:67–77CrossRefGoogle Scholar
  23. Chakraborty SK, Setua DK, De SK (1982) Short jute fiber reinforced carboxylated nitrile rubber. Rubber Chem Technol 55:1286–1307CrossRefGoogle Scholar
  24. Chakravarty SN, Chakravarty A (2007) Reinforcement of rubber compounds with nano-filler. KGK-Kautschuk Gummi Kunststoffe 11:619–622Google Scholar
  25. Cho MS, Seo HJ, Nam JD, Choi HR, Koo JC, Song KG et al (2006) A solid state actuator based on the PEDOT/NBR system. Sens Actuators B 119:621–624Google Scholar
  26. Cho MSSHJ, Nam JD, Choi HR, Koo JC, Lee Y (2007) High ionic conductivity and mechanical strength of solid polymer electrolytes based on NBR/ionic liquid and its application to an electrochemical actuato. Sens Actuators B 128:70–74CrossRefGoogle Scholar
  27. Chodák IPS, Jarĉuŝková J, Jurĉiová J (2010) Changes in electrical conductivity during mechanical deformation of carbon black filled elastomeric matrix. Open Macromol J 4:32–36Google Scholar
  28. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45:967–984CrossRefGoogle Scholar
  29. Cipriani G, Salvini A, Baglioni P, Bucciarelli E (2010) Cellulose as a renewable resource for the synthesis of wood consolidants. J Appl Polym Sci 118(5):2939–2950CrossRefGoogle Scholar
  30. Cooper C, Young R, Halsall M (2001) Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos A Appl Sci Manuf 32(3):401–411CrossRefGoogle Scholar
  31. Coran AY, Boustany K, Hamed P (1974) Short-fiber—rubber composites: the properties of oriented cellulose-fiber—elastomer composites. Rubber Chem Technol 47:396–410CrossRefGoogle Scholar
  32. Cornish K (2001) Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionary divergent plan species. Nat Prod Rep 18:182–189CrossRefGoogle Scholar
  33. Curtzwiler G, Singh J, Miltz J, Vorst K (2008) Characterization and compression properties of injection molded carbon nanotube composites. J Appl Polym Sci 109(1):218–225CrossRefGoogle Scholar
  34. Das A, Stöckelhuber KW, Jurk R, Fritzsche J, Kluppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47:3313–3321Google Scholar
  35. De Coster N, Magg H (2003) NBR in contact with food, potable water, pharmaceutical and cosmetic applications. Kautsch Gummi Kunstst 7(8):405–411Google Scholar
  36. De Falco A, Goyanes S, Rubiolo GH, Mondragon I, Marzocca A (2007) Carbon nanotubes as reinforcement of styrene–butadiene rubber. Appl Surf Sci 254(1):262–265CrossRefGoogle Scholar
  37. de Souza RF, Padilha JC, Gonçalves RS, Dupont J (2003) Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem Commun 5:728Google Scholar
  38. Derringer DC (1971) Compounding with fibers for high performance elastomer compounds. Rubber World 45:165Google Scholar
  39. Donnet JB (2003) Nano and microcomposites of polymers elastomers and their reinforcement. Compos Sci Technol 63(8):1085–1088CrossRefGoogle Scholar
  40. Drzal LT (2002) Environmentally friendly bio-composites from soy-based bio-plastic and natural fiber. Polym Mat Sci Eng 87:117Google Scholar
  41. El Fray M, Goettler LA (2010) Chapter 24, Application of rubber nanocomposites, in the book “Rubber nanocomposites: preparation, properties and applications”. In: Thomas S, Stephen R (eds) John Wiley & Sons (Asia) Pte LtdGoogle Scholar
  42. Feeney CA, Goldberg HA, Farrell M et al (2006) Barrier coating of a non-butyl elastomer and a dispersed layered filler in a liquid carrier and coated articles. US Patent 10741251, to InMat IncGoogle Scholar
  43. Ferreira AFSPN, Ferreira AGM (2012) Quaternary phosphonium-based ionic liquids: thermal stability and heat capacity of the liquid phase. J Chem Thermodyn 45:16–27CrossRefGoogle Scholar
  44. Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63(11):1647–1654CrossRefGoogle Scholar
  45. Fukushima TAT (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J 13(18):5048–5058CrossRefGoogle Scholar
  46. Gan L, Shang SM, Yuen CWM, Jiang SX (2015a) Covalently functionalized graphene with d-glucose and its reinforcement to poly(vinyl alcohol) and poly(methyl methacrylate). RSC Adv 5(21):15954–5961Google Scholar
  47. Gan L, Shang SM, Yuen CWM, Jiang SX, Luo NM (2015b) Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos B Eng 69:237–242Google Scholar
  48. Gao GH, Cagin T, Goddard WA (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9(3):184–191CrossRefGoogle Scholar
  49. Gatos KG, Karger-Kocsis J (2007) Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites. Eur Polym J 43:1097–1104CrossRefGoogle Scholar
  50. Gatos KG, Sawanis NS, Apostolov AA et al (2004) Nanocomposite formation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite nanocomposites as a function of the intercalant type. Macromol Mater Eng 289:1079Google Scholar
  51. Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254Google Scholar
  52. Geethamma VG, Mathew KT, Lakshminarayanan R, Thomas S (1998) Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer 39(6–7):1483–1491CrossRefGoogle Scholar
  53. Geethamma VG, Kalaprasad G, Groeninckx G, Thomas S (2005) Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos A Appl Sci Manuf 36(11):1499–1506CrossRefGoogle Scholar
  54. Gent ANE (1992) How to design rubber components, Hanser (Chapters 1 and 8, in Engineering with Rubber)Google Scholar
  55. Goettler LA, Leib RI, Lambright AJ (1979) Short fiber reinforced hose—a newconcept in production and performance. Rubber Chem Technol 52:838–863CrossRefGoogle Scholar
  56. Goettler LA, Lee KY, Thakkar H (2007) Layered silicate reinforced polymer nanocomposites: development and applications. Polym Rev 47(2):291–317CrossRefGoogle Scholar
  57. Griffini G, Suriano R, Turri S (2012) Correlating mechanical and electrical properties of filler-loaded polyurethane fluoroelastomers: the influence of carbon black. Polym Eng Sci 52:2543–2551Google Scholar
  58. Guo Z, Park S, Hahn HT et al (2007) Magnetic and electromagnetic evaluation of the iron nanoparticle filled polyurethane nanocomposites. J Appl Physiol 101:09M511-09M511-3Google Scholar
  59. Guo B, Liu X, Zhou W, Lei Y, Jia D (2010) Adsorption of ionic liquid onto halloysite nanotubes: mechanism and reinforcement of the modified clay to rubber. J Macromol Sci Phys 49:1029–1043CrossRefGoogle Scholar
  60. Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619CrossRefGoogle Scholar
  61. Hamad WY (2013) Cellulosic materials: fibers, networks and composites. Springer Science & Business Media, DordrechtGoogle Scholar
  62. Hamed GR (2000) Reinforcement of rubber. Rubber Chem Technol 73(3):524–533CrossRefGoogle Scholar
  63. Hashim AS, Kawabata N, Kohjiya S (1995) Silica reinforcement of epoxidized natural rubber by the sol-gel method. J. Sol-Gel Sci Technol 5:211–218Google Scholar
  64. Herd CR, McDonald GC, Hess WM (1992) Morphology of carbon-black aggregates: fractal versus euclidean geometry. Rubber Chem Technol 65:107–129Google Scholar
  65. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164Google Scholar
  66. Imam SH, Greene RV, Zaidi BR (1999) Biopolymers: utilizing nature’s advanced materials. American Chemical Society, Washington, DCGoogle Scholar
  67. Islam M, Rojas E, Bergey D, Johnson A, Yodh A (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273CrossRefGoogle Scholar
  68. Ismail H, Rosnah N, Ishiaku US (1997) Oil palm fibre-reinforced rubber composite: effects of concentration and modification of fibre surface. Polym Int 43:223–230CrossRefGoogle Scholar
  69. Jacob M, Varughese KT, Thomas S (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965CrossRefGoogle Scholar
  70. Jacob M, Francis B, Thomas S, Varughese K (2006) Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym Compos 27(6):671–680CrossRefGoogle Scholar
  71. Jana RN, Cho JW (2008) Thermal stability and molecular interaction of polyurethane nanocomposites prepared by in situ polymerization with functionalized multiwalled carbon nanotubes. J Appl Polym Sci 108(5):2857–2864CrossRefGoogle Scholar
  72. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364CrossRefGoogle Scholar
  73. Joseph S, Joseph K, Thomas S (2006) Green composites from natural rubber and oil palm fiber: physical and mechanical properties. Int J Polym Mater 55:925–945CrossRefGoogle Scholar
  74. Karger-Kocsis J (2006) Dry friction and sliding behavior of organoclay reinforced thermoplastic polyurethane rubbers. Kautsch Gummi Kunstst 10:537–543Google Scholar
  75. Kato M, Tsukigase A, Tanaka H, Usuki A, Inai I (2006) Preparation and properties of isobutylene-isoprene rubber-clay nanocomposites. J Polym Sci A Polym Chem 44(3):1182–1188CrossRefGoogle Scholar
  76. Khan I, Kurnia KA, Mutelet F, Pinho SP, Coutinho JA (2014a) Probing the interactions between ionic liquids and water: experimental and quantum chemical approach. J Phys Chem B 118(7):1848–1860CrossRefGoogle Scholar
  77. Khan I, Kurnia KA, Sintra TE, Saraiva JA, Pinho SP, Coutinho JAP (2014b) Assessing the activity coefficients of water in cholinium-based ionic liquids: experimental measurements and COSMO-RS modeling. Fluid Phase Equilib 361:16–22CrossRefGoogle Scholar
  78. Khan I, Taha M, Ribeiro-Claro P, Pinho SP, Coutinho JAP (2014c) Effect of the cation on the interactions between alkyl methyl imidazolium chloride ionic liquids and water. J Phys Chem B 118(35):10503–10514CrossRefGoogle Scholar
  79. Khan I, Batista ML, Carvalho PJ, Santos LM, Gomes JR, Coutinho JA (2015) Vapor-liquid equilibria of imidazolium ionic liquids with cyano containing anions with water and ethanol. J Phys Chem B 119(32):10287–10303CrossRefGoogle Scholar
  80. Khan I, Taha M, Pinho SP, Coutinho JAP (2016a) Interactions of pyridinium, pyrrolidinium or piperidinium based ionic liquids with water: measurements and COSMO-RS modelling. Fluid Phase Equilib 414:93–100CrossRefGoogle Scholar
  81. Khan I, Umapathi R, Neves MC, Coutinho JA, Venkatesu P (2016b) Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers. Phys Chem Chem Phys 18(12):8342–8351CrossRefGoogle Scholar
  82. Kim TAKHS, Lee SS, Park M (2012) Single-walled carbon nanotube/silicone rubber composites for compliant electrodes. Carbon 50:444–449CrossRefGoogle Scholar
  83. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  84. Klockmann O, Hasse A (2007) A new rubber silane for future requirements—lower rolling resistance; lower VOCs. Kautsch Gummi Kunstst 3:82–84Google Scholar
  85. Klyosov AA (2007) Wood-plastic composites. Wiley, HobokenGoogle Scholar
  86. Koerner H, Liu WD, Alexander M, Mirau P, Dowty H, Vaia RA (2005) Deformation-morphology correlations in electrically conductive carbon nanotube thermoplastic polyurethane nanocomposites. Polymer 46(12):4405–4420CrossRefGoogle Scholar
  87. Kreyenschulte H, Richter S, Gotze T, Fischer D, Steinhauser D, Kluppel M et al (2012) Interaction of 1-allyl-3-methyl-imidazolium chloride and carbon black and its influence on carbon black filled rubbers. Carbon 50:3649–3658CrossRefGoogle Scholar
  88. Kurian T, De PP, Khastgir D, Tripathy DK, De SK, Peiffer DG (1995) Reinforcement of EPDM-based ionic thermoplastic elastomer by carbon black. Polymer 36:3875–3884CrossRefGoogle Scholar
  89. Lalli JH, Claus RO, Hill AB et al (2005) Commercial applications of metal rubber. Proc SPIE Int Soc Opt Eng 5762:1–7Google Scholar
  90. Laskowska A, Marzec A, Boiteux G, Zaborski M, Gain O, Serghei A (2013) Effect of imidazolium ionic liquid type on the properties of nitrile rubber composites. Polym Int 62:1575–1582Google Scholar
  91. Laskowska A, Marzec A, Boiteux G, Zaborski M, Gain O, Serghei A (2014a) Investigations of nitrile rubber composites containing imidazolium ionic liquids. Macromol Symp 341:18–25Google Scholar
  92. Le HH, Hoang XT, Das A, Gohs U, Heinrich G, Stockelhuber KW et al (2012) Kinetics of filler wetting and dispersion in carbon nanotube/rubber composites. Carbon 50:4543–4556CrossRefGoogle Scholar
  93. Lei YD, Tang ZH, Guo BC, Zhu LX, Jia DM (2010) Synthesis of novel functional liquid and its application as a modifier in SBR/silica composites. Express Polym Lett 4:692–703Google Scholar
  94. Lei YTZ, Zhu L, Guo B, Jia D (2011) Functional thiol ionic liquids as novel interfacial modifiers in SBR/HNTs composites. Polymer 52:1337–1344CrossRefGoogle Scholar
  95. Lei Y, Tang ZH, Zhu LX, Guo BC, Jia DM (2012) Thiol-containing ionic liquid for the modification of styrene–butadiene rubber/silica composites. J Appl Polym Sci 123:1252–1260CrossRefGoogle Scholar
  96. Leys J, Wübbenhorst M, Menon CP, Rajesh R, Thoen J, Glorieux C (2008) Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J Chem Phys 128:064509CrossRefGoogle Scholar
  97. Li C (2012) Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol 7:421–427CrossRefGoogle Scholar
  98. Likozar B (2011) The effect of ionic liquid type on the properties of hydrogenated nitrile elastomer/hydroxy-functionalized multi-walled carbon nanotube/ionic liquid composites. Soft Matter 7(3):970–977CrossRefGoogle Scholar
  99. Likozar B, Major Z (2010) Morphology, mechanical, crosslinking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: the effect of acrylonitrile content and hydrogenation. Appl Surf Sci 257:565–5673CrossRefGoogle Scholar
  100. Liu S, Liu W, Liu Y, Lin JH, Zhou X, Janik MJ et al (2010) Influence of imidazolium-based ionic liquids on the performance of ionic polymer conductor network composite actuators. Polym Int 59:321–328CrossRefGoogle Scholar
  101. López-Manchado M, Biagiotti J, Valentini L, Kenny J (2004) Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber. J Appl Polym Sci 92(5):3394–3400CrossRefGoogle Scholar
  102. Lu Gan SS, Jiang S (2016) Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Compos B 84:294–300CrossRefGoogle Scholar
  103. Lu H, Yao Y, Huang WM, Hui D (2014) Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites. Compos B Eng 67:290–295CrossRefGoogle Scholar
  104. Lukich LT (1998) Use of fullerene carbon in curable rubber compounds. US Patent 5750615, to Goodyear Tire and Rubber CoGoogle Scholar
  105. Lv R, Xu W, Na B, Chen B (2008) Insight into the role of filler network in the viscoelasticity of a carbon black filled thermoplastic elastomer: a strain dependent electrical conductivity study. J Macromol Sci B 47:774–782CrossRefGoogle Scholar
  106. Madani M, Basta AH, El-Sayed Abdo A, El-Saied H (2004) Utilization of waste paper in the manufacture of natural rubber composite for radiation shielding. Prog Rubber Plast Recycl Technol 20(4):287–310Google Scholar
  107. Maiti M, Sadhu S, Bhowmick AK (2004) Brominated poly(isobutylene-co-paramethylstyrene) (BIMS)-clay nanocomposites: synthesis and characterization. J Polym Sci B Polym Phys 42:4489–4502CrossRefGoogle Scholar
  108. Marwanta E, Mizumo T, Nakamura N, Ohno H (2005) Improved ionic conductivity of nitrile rubber/ionic liquid composites. Polymer 46:3795–3800CrossRefGoogle Scholar
  109. Marzec A, Laskowska A, Boiteux G, Zaborski M, Gain O, Serghei A (2014a) The impact of imidazolium ionic liquids on the properties of nitrile rubber composites. Eur Polym J 53:139–146Google Scholar
  110. Marzec A, Laskowska A, Boiteux G, Zaborski M, Gain O, Serghei A (2014b) Study on weather aging of nitrile rubber composites containing imidazolium ionic liquids. Macromol Symp 342:25–34Google Scholar
  111. Mathew L, Joseph KU, Joseph R (2004) Isora fibres and their composites with natural rubber. Progress in rubber. Plast Recycl Technol 20:337–349Google Scholar
  112. Meier JG, Klüppel M (2008) Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol Mater Eng 93:12–38CrossRefGoogle Scholar
  113. Miran Beigi AA, Abdouss M, Yousefi M, Pourmortazavi SM, Vahid A (2013) Investigation on physical and electrochemical properties of three imidazolium based ionic liquids (1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-butyl-3-methylimidazolium methylsulfate). J Mol Liq 177:361–368CrossRefGoogle Scholar
  114. Murthy VM, De SK (1982) Effect of particulate fillers on short jute fiber-reinforced natural rubber composites. J Appl Polym Sci 27:4611Google Scholar
  115. Myers AW (2007) Antimicrobial nanocomposites for plastics and coatings. SPX Leadership Technology Forum, Charlotte, N.C., 15 NovemberGoogle Scholar
  116. Myers A, Cook R, Kreutzer C et al (2008) Rocks in the road: nanoparticle design for improved tire performance. Report on SBIR Project, US Department of EnergyGoogle Scholar
  117. Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett 6:638–639CrossRefGoogle Scholar
  118. Nassar MM, Ashour EA, Wahid SS (1996) Thermal characteristics of bagasse. J Appl Polym Sci 61(6):885–890CrossRefGoogle Scholar
  119. Nayeem SM, Nyamathulla S, Khan I, Rao DK (2016) Investigation of molecular interactions in binary mixture (benzyl benzoate + ethyl acetate) at T = (308.15, 313.15, and 318.15) K: an insight from ultrasonic speed of sound and density. J Mol Liq 218:676–685CrossRefGoogle Scholar
  120. Niska KO, Sain M (2008) Wood-polymer composites. Elsevier, CambridgeGoogle Scholar
  121. Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13(4):301–306CrossRefGoogle Scholar
  122. Ou YC, Yu ZZ, Vidal A, Donnet JB (1996) Effects of alkylation of silicas on interfacial interaction and molecular motions between silicas and rubbers. J Appl Polym Sci 59:1321–1325CrossRefGoogle Scholar
  123. Park KY, Lee SE, Kim CG, Han JH (2006) Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos Sci Technol 66(3–4):576–584CrossRefGoogle Scholar
  124. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904Google Scholar
  125. Passos H, Khan I, Mutelet F, Oliveira MB, Carvalho PJ, Santos LMNBF, Held C, Sadowski G, Freire MG, Coutinho JAP (2014) Vapor-liquid equilibria of water plus alkylimidazolium-based ionic liquids: measurements and perturbed-chain statistical associating fluid theory modeling. Ind Eng Chem Res 53(9):3737–3748CrossRefGoogle Scholar
  126. Paul J, Sindhu S, Nurmawati MH, Valiyaveettil S (2006) Mechanics of prestressed polydimethylsiloxane-carbon nanotube composite. Appl Phys Lett 89(18):184101CrossRefGoogle Scholar
  127. Pernak J, Czepukowicz A, Prozniak R (2001) New ionic liquids and their antielectrostatic properties. Ind Eng Chem Res 40:2379–2383Google Scholar
  128. Pernak J, Walkiewicz F, Maciejewska M, Zaborski M (2010) Ionic liquids as vulcanization accelerators. Ind Eng Chem Res 49:5012–5017CrossRefGoogle Scholar
  129. Piegat A, El Fray M, Jawad H et al (2008) Inhibition of calcification of polymer-ceramic composites incorporating nanocrystalline TiO2. Adv Appl Ceram 107(5):287–292CrossRefGoogle Scholar
  130. Pringle JM, Golding J, Forsyth CM, Deacon GB, Forsyth M, MacFarlane DR (2002) Physical trends and structural features in organic salts of the thiocyanate anion. J Mater Chem 12:3475–3480CrossRefGoogle Scholar
  131. Przybyszewska M, Zaborski M (2010) Effect of ionic liquids and surfactants on zinc oxide nanoparticle activity in crosslinking of acrylonitrile butadiene elastomer. J Appl Polym Sci 116:155–164CrossRefGoogle Scholar
  132. Rippel MM, Paula Leite CA, Galembeck, F (2002) Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy. Anal Chem 74:2541–2546Google Scholar
  133. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773Google Scholar
  134. Sahoo BP, Naskar K, Tripathy DK (2011) Electrical properties of ethylene acrylic elastomer (AEM) loaded with conducting carbon black. AIP Conf Proc 1349:190–191CrossRefGoogle Scholar
  135. Scott MP, Rahman M, Brazil VS (2003) Application of ionic liquids as low-volatility plasticizers for PMMA. Eur Polym J 39:1947Google Scholar
  136. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4(3):459–464CrossRefGoogle Scholar
  137. Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47:1956–1974CrossRefGoogle Scholar
  138. Shaffer MS, Sandler JK (2006) Carbon nanotube/nanofibre polymer composites. World Scientific, New York, pp 1–59Google Scholar
  139. Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol 67(9):1813–1822CrossRefGoogle Scholar
  140. Sherif Araby QM, Zhang L, Zaman I, Majewski P, Ma J (2015) Elastomeric composites based on carbon nanomaterials. Nanotechnology 26:112001–1120023CrossRefGoogle Scholar
  141. Sowmiah S, Srinivasadesikan V, Tseng MC, Chu YC (2009) On the chemical stabilities of ionic liquids. Molecules 14:3780–3813CrossRefGoogle Scholar
  142. Sreekala MS, Kumaran MG, Thomas S (1997) Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties. J Appl Polym Sci 66:821CrossRefGoogle Scholar
  143. Srinivasa Reddy M, Khan I, Raju KTSS, Suresh P, Hari Babu B (2016) The study of molecular interactions in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate + 1-pentanol from density, speed of sound and refractive index measurements. J Chem Thermodyn 98:298–308CrossRefGoogle Scholar
  144. Steinhauser D, Subramaniam K, Das A, Heinrich G, Kluppel M (2012) Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. Express Polym Lett 11:927Google Scholar
  145. Stephen R, Varghese S, Joseph K et al (2006) Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends. J Membr Sci 282:162–170CrossRefGoogle Scholar
  146. Subramaniam K, Das A, Heinrich G (2011) Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos Sci Technol 71(11):1441–1449CrossRefGoogle Scholar
  147. Subramaniam K, Das A, Heinrich G (2013) Improved oxidation resistance of conducting polychloroprene composites. Compos Sci Technol 74:14–19Google Scholar
  148. Sui G, Zhong W, Yang X, Zhao S (2007) Processing and material characteristics of a carbon-nanotube-reinforced natural rubber. Macromol Mater Eng 292(9):1020–1026CrossRefGoogle Scholar
  149. Sullivan MJ, Ladd DA (2006) Golf ball containing graphite nanosheets in a polymeric network. US Patent 715756 issued on 11 April, to Acushnet CoGoogle Scholar
  150. Taha M, Khan I, Coutinho JA (2016a) Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes. J Inorg Biochem 157:25–33CrossRefGoogle Scholar
  151. Taha M, Khan I, Coutinho JAP (2016b) Coordination abilities of Good’s buffer ionic liquids toward europium(III) ion in aqueous solution. J Chem Thermodyn 94:152–159CrossRefGoogle Scholar
  152. Takahashi S, Goldberg HA, Feeney CA et al (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47:3083–3093CrossRefGoogle Scholar
  153. Thakur V, Singha A, Thakur M (2011) Green composites from natural cellulosic fibers. LAP Lambert Academic, SaarbrückenGoogle Scholar
  154. Tunckol M, Durand J, Serp P (2012) Carbon nanomaterial–ionic liquid hybrids. Carbon 50(12):4303–4334CrossRefGoogle Scholar
  155. Uchida T, Kumar S (2005) Single wall carbon nanotube dispersion and exfoliation in polymers. J Appl Polym Sci 98(3):985–989CrossRefGoogle Scholar
  156. Usuki A, Tukigase A, Kato M (2002) Preparation and properties of EPDM-clay hybrids. Polymer 43:2185–2189CrossRefGoogle Scholar
  157. Vajrasthira C, Amornsakchai T, Bualek-Limcharoen S (2003) Fiber–matrix interactions in aramid-short-fiber-reinforced thermoplastic polyurethane composites. J Appl Polym Sci 87(7):1059–1067CrossRefGoogle Scholar
  158. Varghese S, Kuriakose B, Thomas S (1994) Stress-relaxation in short sisal-fiber-reinforced natural-rubber composites. J Appl Polym Sci 53(8):1051–1060CrossRefGoogle Scholar
  159. Vila J, Franjo C, Pico JM, Varela LM, Cabeza O (2007) Temperature behavior of the electrical conductivity of emim-based ionic liquids in liquid and solid states. Port Electrochim Acta 25:163–172Google Scholar
  160. Wang M, Kutsovsky Y, Reznek SR, Mahmud K (2002) Elastomeric compounds with improved wet skid resistance and methods to improve wet skid resistance. US Patent 6469089, to Cabot CorpGoogle Scholar
  161. Wang JD, Zhu YF, Zhou XW, Sui G, Liang J (2006) Preparation and mechanical properties of natural rubber powder modified by carbon nanotubes. J Appl Polym Sci 100(6):4697–4702CrossRefGoogle Scholar
  162. Wang X, Hu Y, Song L et al (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21(12):4222–4227CrossRefGoogle Scholar
  163. Wang J, Jia H, Tang YY (2013) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48(4):1571–1577CrossRefGoogle Scholar
  164. Wu L, Qu P, Zhou R (2015) Green synthesis of reduced graphene oxide and its reinforcing effect on natural rubber composites. High Perform Polym 27(4):486–496CrossRefGoogle Scholar
  165. Xiong J, Liu Y, Yang X, Wang X (2004) Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab 86:549Google Scholar
  166. Yadav M, Rhee KY, Park SJ, Hui D (2014) Mechanical properties of Fe3O4/GO/chitosan composites. Compos B Eng 66:89–96CrossRefGoogle Scholar
  167. Yan F, Zhang X, Liu F, Li X, Zhang Z (2015) Adjusting the properties of silicone rubber filled with nanosilica by changing the surface organic groups of nanosilica. Compos B Eng 75:47–52CrossRefGoogle Scholar
  168. Yang J, Tian M, Jia Q-X et al (2007) Improved mechanical and functional properties of elastomer/graphite nanocomposites. Acta Mater 55:6372–6382CrossRefGoogle Scholar
  169. Ye Y-S, Rick J, Hwang B-J (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1(8):2719–2743CrossRefGoogle Scholar
  170. Yingyan Mao SW, Chen Y, Zhang F, Panine P, Chan TW, Zhang L, Liang Y, Liu L (2013) High performance graphene oxide based rubber composites. Sci Rep 3:1–7Google Scholar
  171. Yulian Bai HC, Qiu X, Zheng XFJ (2015) Effects of graphene reduction degree on thermal oxidative stability of reduced graphene oxide/silicone rubber nanocomposites. High Perform Polym 27(8):997–1006CrossRefGoogle Scholar
  172. Zhao Q, Tannenbaum R, Jacob KJ (2006) Carbon nanotubes as Raman sensors of vulcanization in natural rubber. Carbon 44(9):1740–1745CrossRefGoogle Scholar
  173. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Imran Khan
    • 1
    Email author
  • Mohd Amil Usmani
    • 2
  • Aamir H. Bhat
    • 3
  • Jahangir Ahmad Rather
    • 1
  • Syed Imran Hassan
    • 1
  • Abdul Mumam
    • 1
  1. 1.Department of Chemistry, College of ScienceSultan Qaboos UniversityMuscatOman
  2. 2.Department of ChemistryEritrea Institute of TechnologyAsmaraEritrea
  3. 3.Department of Fundamental and Applied SciencesUniversiti Teknologi Petronas MalaysiaTronohMalaysia

Personalised recommendations