Lignin as an Additive for Advanced Composites

  • Yusuf Polat
  • Elena Stojanovska
  • Tolera A. Negawo
  • Elmas Doner
  • Ali KilicEmail author
Part of the Green Energy and Technology book series (GREEN)


Lignin, an abundant renewable resource material next to cellulose, can be one of the most essential bio-resources as a raw material for the production of environmentally friendly polymers and polymer composites. Due to its chemical structure, lignin can provide additional functionalities in composites. It can be used as reinforcers, fillers, compatibilizers and even stabilizing agents in polymer composites. In this chapter use of lignin in composites, its additional benefits and possible applications were summarized. Structure—process—property relations were particularly emphasized. Because of the aromatic structure and multifunctional side groups, lignin can be a promising, environmentally friendly additive as a free radical scavenger which prevents oxidation reactions. For the structural composite applications, material properties were found to be highly dependent on process conditions. One can observe controversy in the reported mechanical properties of composites with similar components and similar lignin concentrations. Thus in some studies addition of lignin resulted with enhanced strength and modulus; while lignin just acted as a filler in some others. Those studies should be carefully evaluated considering the process conditions. Further improvements can also be achieved after modifying lignin chemically.


Lignin Biocomposites Additive Compatibilizer Filler 


  1. Agarwal K, Prasad M, Sharma RB, Setua DK (2014) Novel bio-degradable lignin reinforced NBR composites. Int J Energy Eng 4:47Google Scholar
  2. Aradoaei S, Darie R, Constantinescu G, Olariu M, Ciobanu R (2010) Modified lignin effectiveness as compatibilizer for PET/LDPE blends containing secondary materials. J Non-Cryst Solids Broadband Dielectr Spectro Appl 356:768–771. doi: 10.1016/j.jnoncrysol.2009.11.046 (Proceedings of the 5th International Conference on Broadband Dielectric Spectroscopy and its Applications)
  3. Arshanitsa A, Ponomarenko J, Dizhbite T, Andersone A, Gosselink RJA, Van der Putten J, Lauberts M, Telysheva G (2013) Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J Anal Appl Pyrol Pyrol 2012 103:78–85. doi: 10.1016/j.jaap.2012.12.023
  4. Bajwa DS, Wang X, Sitz E, Loll T, Bhattacharjee S (2016) Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. Int J Biol Macromol 89:265–272CrossRefGoogle Scholar
  5. Calvo-Flores FG, Dobado JA, Garcia JI, Isac-García J, MartÄn-MartÄnez FJ (2015) Lignin and lignans as renewable raw materials: chemistry, technology and applications. WileyGoogle Scholar
  6. Cazacu G, Pascu MC, Profire L, Kowarski AI, Mihaes M, Vasile C (2004) Lignin role in a complex polyolefin blend. Ind Crops Prod 20:261–273CrossRefGoogle Scholar
  7. Dallmeyer JI (2013) Preparation and characterization of lignin nanofibre-based materials obtained by electrostatic spinningGoogle Scholar
  8. Dias OAT, Negrão DR, Silva RC, Funari CS, Cesarino I, Leao AL (2016) Studies of lignin as reinforcement for plastics composites. Mol Cryst Liq Cryst 628:72–78CrossRefGoogle Scholar
  9. Diop A, Mijiyawa F, Koffi D, Kokta BV, Montplaisir D (2015) Study of lignin dispersion in low-density polyethylene. J Thermoplast Compos Mater 28:1662–1674CrossRefGoogle Scholar
  10. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21:692–701. doi: 10.1007/s10924-013-0570-6 CrossRefGoogle Scholar
  11. El-Zawawy WK, Ibrahim MM, Belgacem MN, Dufresne A (2011) Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film. Mater Chem Phys 131:348–357CrossRefGoogle Scholar
  12. Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM, Montaño-Leyva B (2016) Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioResources 11:5452–5481. doi: 10.15376/biores.11.2 CrossRefGoogle Scholar
  13. Faruk O, Obaid N, Tjong J, Sain M (2016) 6—lignin reinforcement in thermoplastic composites. In: Lignin in polymer composites. William Andrew Publishing, pp 95–118Google Scholar
  14. Fukushima RS, Kerley MS (2011) Use of lignin extracted from different plant sources as standards in the spectrophotometric acetyl bromide lignin method. J Agric Food Chem 59:3505–3509. doi: 10.1021/jf104826n CrossRefGoogle Scholar
  15. Gadioli R, Morais JA, Waldman WR, De Paoli M-A (2014) The role of lignin in polypropylene composites with semi-bleached cellulose fibers: mechanical properties and its activity as antioxidant. Polym Degrad Stab 108:23–34. doi: 10.1016/j.polymdegradstab.2014.06.005 CrossRefGoogle Scholar
  16. Gadioli R, Waldman WR, De Paoli MA (2016) Lignin as a green primary antioxidant for polypropylene. J Appl Polym Sci. doi: 10.1002/app.43558 Google Scholar
  17. Glasser WG (1999) Classification of lignin according to chemical and molecular structure. In: Lignin: historical, biological, and materials perspectives, ACS symposium series. American Chemical Society, pp 216–238Google Scholar
  18. González Sánchez C, Alvarez LA (1999) Micromechanics of lignin/polypropylene composites suitable for industrial applications. Angew Makromol Chem 272:65–70CrossRefGoogle Scholar
  19. Hilburg SL, Elder AN, Chung H, Ferebee RL, Bockstaller MR, Washburn NR (2014) A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer 55:995–1003CrossRefGoogle Scholar
  20. Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233. doi: 10.1016/j.eurpolymj.2013.01.019 CrossRefGoogle Scholar
  21. Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green ChemGoogle Scholar
  22. Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25:381–388. doi: 10.1016/S0961-9534(03)00033-3 CrossRefGoogle Scholar
  23. Lee HJ, Lee HK, Lim E, Song YS (2015) Synergistic effect of lignin/polypropylene as a compatibilizer in multiphase eco-composites. Compos Sci Technol 118:193–197. doi: 10.1016/j.compscitech.2015.08.018 CrossRefGoogle Scholar
  24. Li Y, Mlynar J, Sarkanen S (1997) The first 85 % kraft lignin-based thermoplastics. J Polym Sci Part B Polym Phys 35:1899–1910CrossRefGoogle Scholar
  25. Lignin product Market forecast (2016) Global lignin products market—segmented by product type, source, application, and geography—trends and forecasts (2015–2020)—market research report (WWW Document). (Accessed 23 June 2016)
  26. Liu S, Cheng X (2010) Application of lignin as antioxidant in styrene butadiene rubber composite. In: AIP conference proceedings. Presented at the 2nd international symposium on aqua science, water resource and low carbon energy, AIP Publishing, pp 344–347. doi: 10.1063/1.3529319
  27. Liu Y, Carriero S, Pye K, Argyropoulos DS (1999) A comparison of the structural changes occurring in lignin during alcell and kraft pulping of hardwoods and softwoods. In: Lignin: historical, biological, and materials perspectives, ACS symposium series. American Chemical Society, pp 447–464Google Scholar
  28. Liu K, Madbouly SA, Schrader JA, Kessler MR, Grewell D, Graves WR (2015) Biorenewable polymer composites from tall oil-based polyamide and lignin-cellulose fiber. J Appl Polym Sci 132Google Scholar
  29. Liu L, Qian M, Song P, Huang G, Yu Y, Fu S (2016) Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain Chem Eng 4:2422–2431. doi: 10.1021/acssuschemeng.6b00112 CrossRefGoogle Scholar
  30. Luo X, Mohanty A, Misra M (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind Crops Prod 47:13–19CrossRefGoogle Scholar
  31. Luo S, Cao J, Sun W (2015) Evaluation of kraft lignin as natural compatibilizer in wood flour/polypropylene composites. Polym Compos. doi: 10.1002/pc.23821
  32. Maldhure AV, Ekhe JD, Deenadayalan E (2012) Mechanical properties of polypropylene blended with esterified and alkylated lignin. J Appl Polym Sci 125:1701–1712CrossRefGoogle Scholar
  33. Naegele H, Pfitzer J, Ziegler L, Inone-Kauffmann ER, Eisenreich N (2016) Applications of lignin materials and their composites (lignin applications in various industrial sectors, future trends of lignin and their composites). In: Lignin in polymer composites. Elsevier, pp 233–244Google Scholar
  34. Peng Y, Liu R, Cao J (2015) Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering. Appl Surf Sci 332:253–259CrossRefGoogle Scholar
  35. Rajeswara Rao N, Venkatappa Rao T, Ramana Reddy SVS, Sanjeeva Rao B (2015) The effect of gamma irradiation on physical, thermal and antioxidant properties of kraft lignin. J Radiat Res Appl Sci 8:621–629. doi: 10.1016/j.jrras.2015.07.003 CrossRefGoogle Scholar
  36. Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos Part Appl Sci Manuf 42:1710–1718CrossRefGoogle Scholar
  37. Sahoo S, Misra M, Mohanty AK (2013) Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites. J Appl Polym Sci 127:4110–4121CrossRefGoogle Scholar
  38. Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Des 31:4369–4379CrossRefGoogle Scholar
  39. Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. J Biobased Mater Bioenergy 3:1–24. doi: 10.1166/jbmb.2009.1001 CrossRefGoogle Scholar
  40. Scott G (1979) The role of antioxidants in polymer conservation. S Afr J Chem 32:137–145Google Scholar
  41. Shankar S, Reddy JP, Rhim J-W (2015) Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int J Biol Macromol 81:267–273CrossRefGoogle Scholar
  42. Simionescu CI, Rusan V, Macoveanu MM, Cazacu G, Lipsa R, Vasile C, Stoleriu A, Ioanid A (1993) Special issue microphenomena in advanced composites lignin/epoxy composites. Compos Sci Technol 48:317–323. doi: 10.1016/0266-3538(93)90149-B
  43. Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207CrossRefGoogle Scholar
  44. Stiubianu G, Cazacu M, Cristea M, Vlad A (2009) Polysiloxane-lignin composites. J Appl Polym Sci 113:2313–2321CrossRefGoogle Scholar
  45. Tay GS, Shannon-Ong SH, Goh SW, Rozman HD (2011) Enhancement of tensile and impact properties of thermoplastic lignocellulose composites by incorporation of chemically treated alcell lignin as compatibilizer. Polym-Plast Technol Eng 50:160–167. doi: 10.1080/03602559.2010.531423 CrossRefGoogle Scholar
  46. Tay GS, Shannon-Ong SH, Goh SW, Rozman HD (2013) Thermoplastic–lignocellulose composites enhanced by chemically treated alcell lignin as compatibilizer. J Thermoplast Compos Mater 26:733–746. doi: 10.1177/0892705711428660 CrossRefGoogle Scholar
  47. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092CrossRefGoogle Scholar
  48. Thielemans W, Wool RP (2005) Kraft lignin as fiber treatment for natural fiber-reinforced composites. Polym Compos 26:695–705. doi: 10.1002/pc.20141 CrossRefGoogle Scholar
  49. Toriz G, Denes F, Young RA (2002a) Lignin-polypropylene composites. Part 1: Composites from unmodified lignin and polypropylene. Polym Compos 23:806–813CrossRefGoogle Scholar
  50. Toriz G, Denes F, Young RA (2002b) Lignin-polypropylene composites. Part 1: Composites from unmodified lignin and polypropylene. Polym Compos 23:806–813. doi: 10.1002/pc.10478 CrossRefGoogle Scholar
  51. Verma SR, Dwivedi UN (2014) Lignin genetic engineering for improvement of wood quality: applications in paper and textile industries, fodder and bioenergy production. S Afr J Bot 91:107–125. doi: 10.1016/j.sajb.2014.01.002 CrossRefGoogle Scholar
  52. Wood BM, Coles SR, Maggs S, Meredith J, Kirwan K (2011) Use of lignin as a compatibiliser in hemp/epoxy composites. Compos Sci Technol 71:1804–1810. doi: 10.1016/j.compscitech.2011.06.005 CrossRefGoogle Scholar
  53. Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int J Biol Macromol 89:360–368. doi: 10.1016/j.ijbiomac.2016.04.068 CrossRefGoogle Scholar
  54. Yearla SR, Padmasree K (2016) Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci 11:289–302. doi: 10.1080/17458080.2015.1055842 CrossRefGoogle Scholar
  55. Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. Springer Plus 2. doi: 10.1186/2193-1801-2-398
  56. Yu P, He H, Jiang C, Jia Y, Wang D, Yao X, Jia D, Luo Y (2016) Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin. J Appl Polym Sci 133Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yusuf Polat
    • 1
    • 2
  • Elena Stojanovska
    • 1
  • Tolera A. Negawo
    • 1
  • Elmas Doner
    • 1
  • Ali Kilic
    • 1
    Email author
  1. 1.TEMAG LabsIstanbul Technical UniversityTaksim, IstanbulTurkey
  2. 2.Faculty of EngineeringMarmara UniversityGoztepe, IstanbulTurkey

Personalised recommendations