Advertisement

Natural Fiber-Based Biocomposites

  • Longhe Zhang
  • Jing Zhong
  • Xiaofeng RenEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Due to the depletion of fossil resources such as crude oil, coal and natural gas, the impact of energy crisis is becoming more severe as seen from the intense fluctuation of the crude oil price. The growing public concern of using petroleum-based synthetic polymers has stimulated the interest in biodegradable materials from the renewable resources. Recent years have seen a remarkable progress in the development of biocomposites. There is abundant literature concerning the physical properties, manufacturing, applications, and many other aspects of biocomposite research. In this chapter, biodegradable polymers and fillers are introduced in details. A brief overview of some key elements in biocomposites research is given, including surface modification of natural fibers; classification of biocomposites and their general properties; manufacturing of the biocomposites; and applications of the biocomposites.

Keywords

Natural fiber Composites Biopolymer Adhesion Surface modification Coupling agent 

References

  1. Abdul Khalil HPS, Bhat AH, Abu Bakar A, Tahir PM, Zaidul ISM, Jawaid M (2015) In: Pandey JK, Takagi H, Nakagaito AN, Kim HJ (eds) Handbook of polymer nanocomposites. Processing, performance, and application—volume c: polymer nanocomposites of cellulose nanoparticles. Springer-Verlag, Berlin, Heidelberg, pp 475–511Google Scholar
  2. Agrawal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS (2000) Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82CrossRefGoogle Scholar
  3. Alves C, Ferrao PMC, Silva AJ, Reis LG, Freitas M, Rodrigues LB (2011) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18:313–327CrossRefGoogle Scholar
  4. Araujo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775CrossRefGoogle Scholar
  5. Averous L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem NM, Gandini A (eds) Monomers, polymers, and composites from renewable resources. Elsevier, Amsterdam, pp 433–450CrossRefGoogle Scholar
  6. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442CrossRefGoogle Scholar
  7. Bakare IO, Okieimen FE, Pavithran C, Khalil HPSA, Brahmakumar M (2010) Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des 31(9):4274–4280CrossRefGoogle Scholar
  8. Barari B, Ellingham TK, Ghamhia II, Pillai KM, El-Hajjar R, Turng LS, Sabo R (2016) Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos B Eng 84:277–284CrossRefGoogle Scholar
  9. Bax B, Muessig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68(7–8):1601–1607CrossRefGoogle Scholar
  10. Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interface 12(1–2):41–75CrossRefGoogle Scholar
  11. Belgacem MN, Gandini A (2008) Surface modification of cellulose fibres. In: Belgacem NM, Gandini A (eds) Monomers, polymers, and composites from renewable resources. Elsevier, Amsterdam, pp 385–400CrossRefGoogle Scholar
  12. Bera M, Alagirusamy R, Das A (2010) A study on interfacial properties of jute-PP composites. J Reinf Plast Compos 29(20):3155–3161Google Scholar
  13. Bisanda ETN, Ansell MP (1992) Properties of SISAL-CNSL composites. J Mater Sci 27(6):1690–1700CrossRefGoogle Scholar
  14. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  15. Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol 70(12):1687–1696CrossRefGoogle Scholar
  16. Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetrable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329–1336CrossRefGoogle Scholar
  17. Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibres. Macromol Mater Eng 291:449–457CrossRefGoogle Scholar
  18. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. eXPRESS Polym Lett 2:413–422Google Scholar
  19. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A 40(4):404–412CrossRefGoogle Scholar
  20. Bledzki AK, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind Crops Prod 70:91–99CrossRefGoogle Scholar
  21. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67(3–4):462–470CrossRefGoogle Scholar
  22. Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdanov A, Gentile G, Errico ME (2007) Natural fiber eco-composites. Polym Compos 28(1):98–107CrossRefGoogle Scholar
  23. Brosius D (2006) Natural fiber composites slowly take root. Compos Technol (February)Google Scholar
  24. Bullions T, Gillespie R, Price-O’Brien J, Loos A (2004) The effect of maleic anhydride modified polypropylene on the mechanical properties of feather fiber, kraft pulp, polypropylene composites. J Appl Polym Sci 92:3771–3783CrossRefGoogle Scholar
  25. Cao PF, Mangdlao JD, Advincula RC (2015) Stimuli-responsive polymers and their potential applications in oil-gas industry. Polym Rev 55:706–733CrossRefGoogle Scholar
  26. Carlmark A, Larsson E, Malmstrom E (2012) Grafting of cellulose by ring-opening polymerisation—a review. Eur Polym J 48(10):1646–1659CrossRefGoogle Scholar
  27. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335CrossRefGoogle Scholar
  28. Cunha AM, Liu ZQ, Feng Y, Yi XS, Bernardo CA (2001) Preparation, processing and characterization of biodegradable wood flour/starch-cellulose acetate compounds. J Mater Sci 36(20):4903–4909CrossRefGoogle Scholar
  29. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A 43(8):1419–1429CrossRefGoogle Scholar
  30. Dobircau L, Sreekumar PA, Saiah R, Leblanc N, Terrie C, Gattin R et al (2009) Wheat flour thermoplastic matrix reinforced by waste cotton fibre: agro-green-composites. Compos A 40(4):329–334CrossRefGoogle Scholar
  31. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  32. Fejos M, Karger-Kocsis J, Grishchuk S (2013) Effect of fibre content and textile structure on dynamic—mechanical and shape-memory properties of ELO/Flax biocomposites. J Reinf Plast Compos 32(24):1879–1886CrossRefGoogle Scholar
  33. Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52(3):259–320CrossRefGoogle Scholar
  34. Gelse K, Poschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546CrossRefGoogle Scholar
  35. George M, Mussone PG, Bressler DC (2014) Surface and thermal characterization of natural fibres treated with enzymes. Ind Crops Prod 53:365–373CrossRefGoogle Scholar
  36. Gowda TM, Naidu ACB, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos A 30(3):277–284CrossRefGoogle Scholar
  37. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807CrossRefGoogle Scholar
  38. Gulati D, Sain M (2006) Fungal modification of natural fibers: a novel method of treating natural fibers for composite reinforcement. J Polym Environ 14:347–352CrossRefGoogle Scholar
  39. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A 77:1–25CrossRefGoogle Scholar
  40. Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH (2010) Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean J Chem Eng 27(2):651–657CrossRefGoogle Scholar
  41. Hartmann H (1998) High molecular weight polylactic acid polymers. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer-Verlag, Berlin, pp 367–411CrossRefGoogle Scholar
  42. Hassan MK, Mauritz KA, Storey RF, Wiggins JS (2006) Biodegradable aliphatic thermoplastic polyurethane based on poly(epsilon-caprolactone) and L-lysine diisocyanate. J Polym Sci Part A Polym Chem 44(9):2990–3000CrossRefGoogle Scholar
  43. Hollaway LC (2010) A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr Build Mater 24(12):2419–2445CrossRefGoogle Scholar
  44. Hon DNS (1992) New developments in cellulosic derivatives and copolymers. ACS Symp Ser 476:176–196CrossRefGoogle Scholar
  45. Hon DNS, Ou NH (1989) Thermoplasticization of wood I. Benzylation of wood. J Polym Sci Polym Chem 27(7):2457–2482Google Scholar
  46. Hong CK, Wool RP (2005) Development of a bio-based composite material from soybean oil and keratin fibers. J Appl Polym Sci 95(6):1524–1538CrossRefGoogle Scholar
  47. Hori Y, Takahashi Y, Yamaguchi A, Nishishita T (1993) Ring-opening copolymerization of optically-active beta-butyrolactone with several lactones catalyzed by distannoxane complexes—synthesis of new biodegradable polyesters. Macromolecules 26(16):4388–4390CrossRefGoogle Scholar
  48. Hsieh W-C, Wada Y, Mitobe T, Mitomo H, Seko N, Tamada M (2009) Effect of hydrophilic and hydrophobic monomers grafting on microbial poly(3-hydroxybutyrate). J Taiwan Inst Chem Eng 40(4):413–417CrossRefGoogle Scholar
  49. Hu L, Wan Y, He F, Luo HL, Liang H, Li X, Wang J (2009) Effect of coupling treatment on mechanical properties of bacterial cellulose nanofibre reinforced UPR ecocomposites. Mater Lett 63:1952–1954CrossRefGoogle Scholar
  50. Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) “Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. J Mater Sci 40(16):4221–4229CrossRefGoogle Scholar
  51. Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66(11–12):1813–1824CrossRefGoogle Scholar
  52. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68(2):424–432CrossRefGoogle Scholar
  53. Islam MN, Rahman MR, Haque MM, Huque MM (2010) Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos Part A Appl Sci 41:192–198CrossRefGoogle Scholar
  54. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364CrossRefGoogle Scholar
  55. Joseph P (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol 59:1625–1640CrossRefGoogle Scholar
  56. Joubert F, Musa OM, Hodgson DRW, Cameron NR (2014) The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 43:7217–7235CrossRefGoogle Scholar
  57. Juzwa M, Jedlinski Z (2006) Novel synthesis of poly(3-hydroxybutyrate). Macromolecules 39(13):4627–4630CrossRefGoogle Scholar
  58. Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16CrossRefGoogle Scholar
  59. Kharazipour A, Huettermann A, Luedemann HD (1997) Enzymatic activation of wood fibres as a means for the production of wood composites. J Adhes Sci Technol 11(3):419–427CrossRefGoogle Scholar
  60. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B 44:120–127CrossRefGoogle Scholar
  61. Kushwaha PK, Kumar R (2010) Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites. J Reinf Plast Compos 0(00):1–13Google Scholar
  62. Lawton JW, Shogren RL, Tiefenbacher KF (2004) Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind Crops Prod 19(1):41–48CrossRefGoogle Scholar
  63. Le Duigou A, Castro M (2015) Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Ind Crops Prod 71:1–6CrossRefGoogle Scholar
  64. Lee KY, Delille A, Bismarck A (2011) Greener surface treatments of natural fibres for the production of renewable composite materials. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer. Springer-Verlag, Heidelberg, pp 155–178CrossRefGoogle Scholar
  65. Lenz RW (2005) Biodegradable polymers. Adv Polym Sci 107:1–40CrossRefGoogle Scholar
  66. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRefGoogle Scholar
  67. Li J, Isayev AI, Ren X, Soucek MD (2015a) Modified soybean oil-extended SBR compounds and vulcanizates filled with carbon black. Polymer 60:144–156CrossRefGoogle Scholar
  68. Li Y, Luo X, Hu S (2015b) Bio-based polyols and polyurethanes. Springer, HeidelbergCrossRefGoogle Scholar
  69. Liu ZS, Erhan SZ, Xu J, Calvert PD (2002) Development of soybean oil-based composites by solid freeform fabrication method: epoxidized soybean oil with bis or polyalkyleneamine curing agents system. J Appl Polym Sci 85(10):2100–2107CrossRefGoogle Scholar
  70. Liu Z, Erhan SZ, Xu J (2005) Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites. Polymer 46(23):10119–10127CrossRefGoogle Scholar
  71. Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94(1):90–94CrossRefGoogle Scholar
  72. Malmstrom E, Carlmark A (2012) Controlled grafting of cellulose fibres—an outlook beyond paper and cardboard. Polym Chem 3:1702–1713CrossRefGoogle Scholar
  73. Manikandan Nair KC, Diwan SM, Thomas S (1996) Tensile properties of short sisal fiber reinforced polystyrene composites. J Appl Polym Sci 60:1483–1497CrossRefGoogle Scholar
  74. Manikandan Nair KC, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61(16):2519 Google Scholar
  75. Mansour OY, Nagaty A, El-Zawawy WK (1994) Variables affecting the methylation reactions of cellulose. J Appl Polym Sci 54(5):519–524CrossRefGoogle Scholar
  76. Masuelli MA (2013) Fiber reinforced polymers—the technology applied for concrete repair. InTech, RijekaCrossRefGoogle Scholar
  77. Matyjaszewski K (2012) Atom transfer radical polymerization: current status and future perspectives. Macromolecules 45(10):4015–4039CrossRefGoogle Scholar
  78. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221CrossRefGoogle Scholar
  79. Mishra S, Naik JB, Patil YP (2000) The Compstibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos Sci Technol 60(9):1729–1735CrossRefGoogle Scholar
  80. Mishra S, Misra M, Tripathy SS, Mayak SK, Mohanty AK (2002) The influence of chemical surface modification on the performance of sisal-polyester biocomposites. Polym Compos 23(2):164–170CrossRefGoogle Scholar
  81. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(3–4):1–24CrossRefGoogle Scholar
  82. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8:313–343CrossRefGoogle Scholar
  83. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26CrossRefGoogle Scholar
  84. Mohanty AK, Tummala P, Misra M, Drzal LT (2009) Filler-reinforced thermoplastic compositions containing metal salts and process for manufacture. US Patent 7,582,241 B2Google Scholar
  85. Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1(2):117–126CrossRefGoogle Scholar
  86. Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19(3):714–725CrossRefGoogle Scholar
  87. Mukherjee PS, Satyanarayana KG (1986) Structure and properties of some vegetable fibers. 2. Pineapple fiber (Anannus-comosus). J Mater Sci 21(1):51–56CrossRefGoogle Scholar
  88. Musiol M, Janeczek H, Jurczyk S, Kwiecien I, Sobota M, Marcinkowski A et al (2015) (Bio)Degradation studies of degradable polymer composites with jute in different environments. Fibers Polym 16(6):1362–1369CrossRefGoogle Scholar
  89. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234CrossRefGoogle Scholar
  90. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798CrossRefGoogle Scholar
  91. Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51(2):134–140CrossRefGoogle Scholar
  92. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRefGoogle Scholar
  93. Nguyen T, Zavarin E, Barral EM (1981) Thermal analysis of lignocellulosic materials. Part I—unmodified materials. J Macromol Sci Rev Macromol Chem C20:1–65Google Scholar
  94. Nguyen T, Zavarin E, Barral EM (1981) Thermal analysis of lignocellulosic materials. Part II—modified materials. J Macromol Sci Rev Macromol Chem C21:1–60Google Scholar
  95. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog Polym Sci 38(1):63–235CrossRefGoogle Scholar
  96. Nykter M, Kymalainen HR, Thomsen AB, Lilholt H, Koponen H, Sjoberg AM, Thygesen A (2008) Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fiber hemp (Cannabis sativa L.). Biomass Bioenerg 32:392–399CrossRefGoogle Scholar
  97. Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos 20(7):621–627CrossRefGoogle Scholar
  98. Paetau I, Chen CZ, Jane JL (1994) Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical-properties and water-absorption. Ind Eng Chem Res 33(7):1821–1827CrossRefGoogle Scholar
  99. Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295:975–989CrossRefGoogle Scholar
  100. Paredes N, Rodriguez-Galan A, Puiggali J (1998) Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J Polym Sci Part A Polym Chem 36(8):1271–1282CrossRefGoogle Scholar
  101. Park SJ, Jin JS (2001) Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J Colloid Interface Sci 242:174–179CrossRefGoogle Scholar
  102. Park JM, Quang ST, Hwang BS, DeVries KL (2006) Interfacial evaluation of modified jute and hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission. Compos Sci Technol 66(15):2686–2699CrossRefGoogle Scholar
  103. Pervaiz M, Sain MM (2003) Sheet-molded polyolefin natural fiber composites for automotive applications. Macromol Mater Eng 288:553–557CrossRefGoogle Scholar
  104. Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully AD (2009) Effect of matrix-particle interfacial adhesion on the mechanical properties of poly(lactic acid)/wood-flour micro-composites. J Polym Environ 17(2):83–94CrossRefGoogle Scholar
  105. Pickering KL, Efendy MGA, Le TM (2015) A review of recent developments in natural fibre composites and their mechanical performance. Compos A doi: 10.1016/j.compositesa.08:038
  106. Poth U (2001) Drying oils and related products. Ullmann’s encyclopedia of industrial chemistryGoogle Scholar
  107. Prakobna K, Galland S, Berglund LA (2015) High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers. Biocomolecules 16:904–912Google Scholar
  108. Qiu R, Ren X, Fifield LS, Simmons KL, Li K (2011) Hemp-fiber-reinforced unsaturated polyester composites: optimization of processing and improvement of interfacial adhesion. J Appl Polym Sci 15; 121(2):862–8Google Scholar
  109. Qiu R, Ren X, Li K (2012a) Effect of fiber modification with a novel compatibilizer on the mechanical properties and water absorption of hemp-fiber-reinforced unsaturated polyester composites. Polym Eng Sci 52(6):1342–1347CrossRefGoogle Scholar
  110. Qiu R, Ren X, Li K (2012) Effects of sizes, shapes and orientation of bamboo fibers on properties of bamboo-unsaturated polyester composites. In: Abstracts of papers of the american chemical society 2012 Mar 25 (vol 243). 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical SocGoogle Scholar
  111. Rahman MR, Huque MM, Islam MN, Hasan M (2009) Mechanical properties of polypropylene composites reinforced with chemically treated Abaca. Compos Part A Appl Sci 40:511–517CrossRefGoogle Scholar
  112. Rahman MA, Parvin F, Hasan M, Hoque ME (2015) Introduction to manufacturing of natural fibre-reinforced polymer composites. In: Salit MS, Jawaid M, Yusoff NB, Hoque ME (eds) Manufacturing of natural fibre reinforced polymer composites. Springer, Switzerland, pp 17–43CrossRefGoogle Scholar
  113. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRefGoogle Scholar
  114. Rayung M, Ibrahim NA, Zainuddin N, Saad WZ, Razak NIA, Chieng BW (2014) The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites. Int J Mol Sci 15:14728–14742CrossRefGoogle Scholar
  115. Reddy N (2015) A review on completely biodegradable composites developed using soy-based matrices. Reinf Plast Compos 0(0):1–19Google Scholar
  116. Ren X, Li K (2013) Investigation of vegetable-oil-based coupling agents for kenaf-fiber-reinforced unsaturated polyester composites. J Appl Polym Sci 15; 128(2):1101–9Google Scholar
  117. Ren X, Soucek MD (2014) Soya-based coatings and adhesives. Soy-based Chem Mater 207–254Google Scholar
  118. Ren X, Qiu R, Li K (2012a) Modifications of kenaf fibers with N-methylol acrylamide for production of kenaf-unsaturated polyester composites. J Appl Polym Sci 125(4):2846–2853CrossRefGoogle Scholar
  119. Ren X, Qiu R, Fifield LS, Simmons KL, Li K (2012b) Effects of surface treatments on mechanical properties and water resistance of kenaf fiber-reinforced unsaturated polyester composites. J Adhes Sci Technol 26(18–19):2277–2289Google Scholar
  120. Ren X, Li C, Li K (2013) Investigation of acrylamide-modified melamine-formaldehyde resins as a compatibilizer for kenaf-unsaturated polyester composites. Polym Eng Sci 53(8):1605–1613CrossRefGoogle Scholar
  121. Ren X, Meng L, Soucek MD (2016) Environmentally friendly coatings. Biobased Environmentally Benign Coat 183–224Google Scholar
  122. Romhany G, Karger-Kocsis J, Czigany T (2003) Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements. Macromol Mater Eng 288(9):699–707CrossRefGoogle Scholar
  123. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unifirectional sisal-reinforced epoxy composites. Compos Sci Tech 61(10):1437–1447CrossRefGoogle Scholar
  124. Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the mateirals. Compos Sci Technol 66(7–8):895–906CrossRefGoogle Scholar
  125. Rowell RM (1992) Property enhancement of wood composites. In: Rowell RM, Vigo T, Kinzig B (eds) Composite applications—the role of matrix, fibre and interface. VCH Publishers, New York, Chapter 4Google Scholar
  126. Roy I, Visakh PM (eds) (2015) Polyhydroxyalkanoate (PHA) based blends, composites and nanocomposites. The Royal Society of Chemistry, CambridgeGoogle Scholar
  127. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefGoogle Scholar
  128. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301CrossRefGoogle Scholar
  129. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363CrossRefGoogle Scholar
  130. Sanadi AR, Caulfield DF, Jacobson RE, Rowell RM (1995) Renewable agricultural fibers as reinforcing filers in plastics: mechanical properties of kenaf fiber-polypropylene composites. Ind Eng Chem Res 34(5):1889–1896CrossRefGoogle Scholar
  131. Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17(5):987–1004CrossRefGoogle Scholar
  132. Satyanarayana KG (2004) Steam explosion—a boon for value addition to renewable resources. Metal News 22:35–40Google Scholar
  133. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fiber—an overview. Prog Polym Sci 34:982–1021CrossRefGoogle Scholar
  134. Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem 35(6):573–579CrossRefGoogle Scholar
  135. Shanks R, Hodzic A, Wong S (2004) Thermoplastic biopolyester natural fiber composites. J Appl Polym Sci 91:2114–2121CrossRefGoogle Scholar
  136. Sheu D-S, Chen W-M, Yang J-Y, Chang R-C (2009) Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme Microbial Technol 44(5):289–294CrossRefGoogle Scholar
  137. Singha AS, Rana AK (2012) A study on benzoylation and graft copolymerization of lignocellulosic cannabis indica fiber. J Polym Environ 20(2):361–371CrossRefGoogle Scholar
  138. Soucek MD, Ren X (2015) UV-curable coating technologies. Photocured Mater 15–48Google Scholar
  139. Srebrenkoska V, Gaceva GB, Dimeski D (2009) Preparation and recycling of polymer eco-composites I. Comparison of the conventional molding techniques for preparation of polymer eco-composites. Maced J Chem Chem Eng 28(1):99–109Google Scholar
  140. Stevens ES (2003) What makes green plastics green? Biocycle 44(3):24–27Google Scholar
  141. Sue HJ, Wang S, Jane JL (1997) Morphology and mechanical behaviour of engineering soy plastics. Polymer 38(20):5035–5040CrossRefGoogle Scholar
  142. Thakur VK (ed) (2015) Cellulose-based graft copolymers: structure and chemistry. CRC Press, Boca RatonGoogle Scholar
  143. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd Polym 109:102–117CrossRefGoogle Scholar
  144. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical treatment and enzymatic treatment. LWT-Food Sci Technol 59(2):1311–1318CrossRefGoogle Scholar
  145. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43(2):775–787CrossRefGoogle Scholar
  146. Trejo-O’reilly J, Cavaill´e J, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Compos 21:65–71Google Scholar
  147. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl Sci 36:1110–1118CrossRefGoogle Scholar
  148. Tsujimoto T, Takayama T, Uyama H (2015) Biodegradable shape memory polymeric material from epoxidized soybean oil and polycaprolactone. Polymers 7(10):2165–2174CrossRefGoogle Scholar
  149. Ugbolue SCO (1983) The relation between yarn and fabric properties in plain-knitted structures. J Text Inst 74(5):272–280CrossRefGoogle Scholar
  150. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999a) Chemical modification of henequen fibers with an organosilane coupling agent. Compos B Eng 30(3):321–331CrossRefGoogle Scholar
  151. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999b) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos B Eng 30(3):309–320CrossRefGoogle Scholar
  152. Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos Part A Appl S 37:1368–1376CrossRefGoogle Scholar
  153. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344CrossRefGoogle Scholar
  154. Wang S, Sue HJ, Jane J (1996) Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. J Macromol Sci Part A Pure Appl Chem A 33(5):557–569CrossRefGoogle Scholar
  155. Wang B, Panigrahi S, Tabil L, Crerar W (2007) J Reinf Plast Compos 26(5):447–463Google Scholar
  156. Wanjale SD, Jog JP (2011) Polyolefin-based natural fiber composites. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer. Springer-Verlag, Heidelberg, pp 377–394CrossRefGoogle Scholar
  157. Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44(2):289–299CrossRefGoogle Scholar
  158. Wong S, Shanks R, Hodzic A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287(10):647–655CrossRefGoogle Scholar
  159. Xie F, Pollet E, Hally PJ, Averous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628CrossRefGoogle Scholar
  160. Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5(11):1149–1163CrossRefGoogle Scholar
  161. Xu JY, Liu ZS, Erhan SZ, Carriere CJ (2004) Cross-linkers control the viscoelastic properties of soybean oil-based biomaterials. J Am Oil Chem Soc 81(8):813–816CrossRefGoogle Scholar
  162. Yang HS, Wolcott MP, Kim HS, Kim S, Kim HJ (2006) Properties of lignocellulosic material filled polypropylene bio-composites made with different manufacturing processes. Polym Test 25:668–676CrossRefGoogle Scholar
  163. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil 93:90–98CrossRefGoogle Scholar
  164. Yoo ES, Im SS (1999) Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Pol Phys 37(13):1357–1366CrossRefGoogle Scholar
  165. Yu T, Li Y, Ren J (2009) Preparation and properties of short natural fiber reinforced poly(lactic acid) composites. Trans Nonferrous Met Soc China 19:S651–S655CrossRefGoogle Scholar
  166. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A Appl Sci 41(4):499–505CrossRefGoogle Scholar
  167. Zhang L, Cool LR, Wesdemiotis C, Weiss RA, Cavicchi KA (2013) Syntheses of quaternary ammonium-containing, trithiocarbonate RAFT agents and hemi-telechelic cationomers. Polym Chem 5(4):1180–1190CrossRefGoogle Scholar
  168. Zhang L, Brostowitz NR, Cavicchi KA, Weiss RA (2014a) Perspective: ionomer research and applications. Macromol React Eng 8(2):81–99CrossRefGoogle Scholar
  169. Zhang L, Tang Q, Weiss RA, Cavicchi KA (2014b) Synthesis and characterization of quaternary phosphonium-containing, trithiocarbonate RAFT agents. Polym Chem 5(18):5492–5500CrossRefGoogle Scholar
  170. Zhang W, Vinueza NR, Datta P, Michielsen S (2015) Functional dye as a comonomer in a water-soluble polymer. J Polym Sci Polym Chem 53(13):1594–1599CrossRefGoogle Scholar
  171. Zhong J, Zhang L, Yu J, Tan T, Zhang X (2010) Studies of different kinds of fiber pretreating on the properties of PLA/sweet sorghum fiber composites. J Appl Polym Sci 117(3):1385–1393Google Scholar
  172. Zhong J, Li H, Yu J, Tan T (2011) Effects of natural fiber surface modification on mechanical properties of poly (lactic acid)(PLA)/sweet sorghum fiber composites. Polymer-Plastics Technol Eng 50(15):1583–1589CrossRefGoogle Scholar
  173. Zhou D, Yao L, Liang F, Zhao D, Jiang M, Zhang W, Wu H, Luo R, Zhang B, Qiu Y (2010) Tensile and shear properties of three dimensional orthogonal woven basalt/kevlar hybrid composites. Fiber Compos 1:17–20Google Scholar
  174. Zimniewska M, Wladyka-Przybylak M, Mankowski J (2011) Cellulosic bast fibers, their structure and properties suitable for composite applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer. Springer-Verlag, Heidelberg, pp 97–120CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Polymer EngineeringThe University of AkronAkronUSA
  2. 2.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations