Advertisement

Sustainable Biocomposites: Challenges, Potential and Barriers for Development

  • Faris M. AL-OqlaEmail author
  • Mohammad A. Omari
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Since natural fibers have many advantages, modern societies start switching for new green materials including natural fibers to contribute meeting the demand of weight reduction, environmental issues as well as customer satisfaction attributes. However, fully replacement of green bio-composites has many challenges. Inadequate availability of data regarding the performance of bio-composites due to the large variety of their constituents is the most challenging barrier in this field. A gap in the way of assessing bio-composites relative to comprehensive desired criteria for various industrial applications have been revealed. Therefore, processing consideration and proper selection of the composite constituents and their characteristics should be extensively investigated in order to achieve good part design with bio-composites. Moreover, high coefficients of safety factors are still required in such green products. Inconsistency of natural fibers properties as a major drawback as well as others that limit their applications in bio-composites are comprehensively discussed here.

Keywords

Bio-composites Composites drawbacks Bio-composites limitations Green products 

References

  1. Alamri H, Low IM (2012) Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater Des 42:214–222CrossRefGoogle Scholar
  2. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63CrossRefGoogle Scholar
  3. AL-Oqla FM, Hayajneh MT (2007) A design decision-making support model for selecting suitable product color to increase probability. In: Design challenge conference: managing creativity, innovation, and entrepreneurship, Amman, Jordan Google Scholar
  4. Al-Oqla FM, Omar AA (2012) A decision-making model for selecting the GSM mobile phone antenna in the design phase to increase over all performance. Prog Electromagnet Res C 25:249–269. doi: 10.2528/PIERC11102702 CrossRefGoogle Scholar
  5. AL-Oqla FM, Sapuan SM (2014a) Date palm fibers and natural composites. In: Postgraduate symposium on composites science and technology 2014 & 4th postgraduate seminar on natural fibre composites 2014, 28/01/2014, Putrajaya, Selangor, MalaysiaGoogle Scholar
  6. AL-Oqla FM, Sapuan SM (2014b) Enhancement selecting proper natural fiber composites for industrial applications. In: Postgraduate symposium on composites science and technology 2014 & 4th postgraduate seminar on natural fibre composites 2014, 28/01/2014, Putrajaya, Selangor, Malaysia Google Scholar
  7. AL-Oqla FM, Sapuan SM (2014c) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354. doi: 10.1016/j.jclepro.2013.10.050
  8. Al-Oqla FM, Omar AA (2015) An expert-based model for selecting the most suitable substrate material type for antenna circuits. Int J Electron 102(6):1044–1055CrossRefGoogle Scholar
  9. Al-Oqla FM, Sapuan SM (2015) Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. JOM 67(10):2450–2463CrossRefGoogle Scholar
  10. AL-Oqla FM, Alothman OY, Jawaid M, Sapuan SM, Es-Saheb M (2014a) Processing and properties of date palm fibers and its composites. In: Biomass and bioenergy. Springer, pp 1–25Google Scholar
  11. AL-Oqla FM, Sapuan SM, Ishak MR, Aziz NA (2014b) Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. BioResources 9(3):4608–4621. doi: 10.15376/biores.9.3.4608-4621
  12. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2014c) A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources 10(1):299–312Google Scholar
  13. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015a) Decision making model for optimal reinforcement condition of natural fiber composites. Fibers Polym 16(1):153–163Google Scholar
  14. AL-Oqla FM, Sapuan SM, Ishak MR, Nuraini AA (2015b) Selecting natural fibers for bio-based materials with conflicting criteria. Am J Appl Sci 12(1):64–71Google Scholar
  15. AL-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque M (2015c) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 206:42–54Google Scholar
  16. AL-Oqla FM, Sapuan SM, Ishak M, Nuraini A (2015d) A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. Int J Polym Anal Charact 20(just-accepted):191–205Google Scholar
  17. AL-Oqla FM, Sapuan SM, Ishak M, Nuraini A (2015e) Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Comput Electron Agric 113:116–127Google Scholar
  18. AL-Oqla FM, Sapuan SM, Ishak M, Nuraini A (2016) A decision-making model for selecting the most appropriate natural fiber–polypropylene-based composites for automotive applications. J Compos Mater 50(4):543–556Google Scholar
  19. Alves C, Ferrão PMC, Silva AJ, Reis LG, Freitas M, Rodrigues LB, Alves DE (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18(4):313–327. doi: 10.1016/j.jclepro.2009.10.022 CrossRefGoogle Scholar
  20. Al-Widyan MI, Al-Oqla FM (2011) Utilization of supplementary energy sources for cooling in hot arid regions via decision-making model. Int J Eng Res Appl 1(4):1610–1622Google Scholar
  21. Al-Widyan MI, Al-Oqla FM (2014) Selecting the most appropriate corrective actions for energy saving in existing buildings A/C in hot arid regions. Build Simul 7(5):537–545. doi: 10.1007/s12273-013-0170-3 CrossRefGoogle Scholar
  22. Arbelaiz A, Fernandez B, Ramos J, Retegi A, Llano-Ponte R, Mondragon I (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65(10):1582–1592CrossRefGoogle Scholar
  23. Aridi N, Sapuan SM, Zainudin E, AL-Oqla FM (2016) Mechanical and morphological properties of injection-molded rice husk polypropylene composites. Int J Polym Anal Charact 21(4):305–313Google Scholar
  24. Ashby MF, Johnson K (2013) Materials and design: the art and science of material selection in product design. Butterworth-HeinemannGoogle Scholar
  25. Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. Waste Manag 30(4):680–684CrossRefGoogle Scholar
  26. Azwa Z, Yousif B, Manalo A, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442CrossRefGoogle Scholar
  27. Babu KF, Subramanian SS, Kulandainathan MA (2013) Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr Polym 94(1):487–495CrossRefGoogle Scholar
  28. Bendahou A, Kaddami H, Sautereau H, Raihane M, Erchiqui F, Dufresne A (2008) Short palm tree fibers polyolefin composites: effect of filler content and coupling agent on physical properties. Macromol Mater Eng 293(2):140–148CrossRefGoogle Scholar
  29. Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83CrossRefGoogle Scholar
  30. Bora M, Baruah G, Talukdar C (1993) Studies on the dielectric properties of some natural (plant) and synthetic fibres in audio frequency range and their DC conductivity at elevated temperature. Thermochim Acta 218:435–443CrossRefGoogle Scholar
  31. Cheng Q, Wang J, Wen J, Liu C, Jiang K, Li Q, Fan S (2010) Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon 48(1):260–266CrossRefGoogle Scholar
  32. Dalalah D, Al-Oqla FM, Hayajneh M (2010) Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of cranes. Jordan J Mech Ind Eng JJMIE 4(5):567–578Google Scholar
  33. Dittenber DB, GangaRao HV (2011) Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf 43(8):1419–1429CrossRefGoogle Scholar
  34. Dweiri F, Al-Oqla FM (2006) Material selection using analytical hierarchy process. Int J Comput Appl Technol 26(4):182–189. doi: 10.1504/IJCAT.2006.010763 CrossRefGoogle Scholar
  35. Faruk O, Bledzki AK, Fink H-P, Sain M (2012a) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  36. Faruk O, Bledzki AK, Fink H-P, Sain M (2012b) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003 CrossRefGoogle Scholar
  37. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128CrossRefGoogle Scholar
  38. George G, Joseph K, Nagarajan E, Tomlal Jose E, George K (2013) Dielectric behaviour of PP/jute yarn commingled composites: Effect of fibre content, chemical treatments, temperature and moisture. Compos Part A Appl Sci Manuf 47:12–21Google Scholar
  39. Hardy JG, Lee JY, Schmidt CE (2013) Biomimetic conducting polymer-based tissue scaffolds. Curr Opin Biotechnol 24(5):847–854CrossRefGoogle Scholar
  40. Hassan ML, Hassan EA, Oksman KN (2011) Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. J Mater Sci 46(6):1732–1740CrossRefGoogle Scholar
  41. Ho M-P, Wang H, Lee J-H, Ho C-K, Lau K-T, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos B Eng 43(8):3549–3562CrossRefGoogle Scholar
  42. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. J Miner Met Mater Soc 58(11):80–86CrossRefGoogle Scholar
  43. Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers. Carbohydr Polym 101:11–19CrossRefGoogle Scholar
  44. Jabbour CJC, Jabbour ABLDS, Govindan K, Teixeira AA, Freitas WRDS (2013) Environmental management and operational performance in automotive companies in Brazil: the role of human resource management and lean manufacturing. J Clean Prod 47:129–140Google Scholar
  45. Jahan A, Ismail MY, Sapuan S, Mustapha F (2010) Material screening and choosing methods–a review. Mater Des 31(2):696–705CrossRefGoogle Scholar
  46. Jawaid M (2011) Abdul Khalil, H.: Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18CrossRefGoogle Scholar
  47. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364CrossRefGoogle Scholar
  48. Kalia S, Dufresne A, Cherian BM, Kaith B, Avérous L, Njuguna J, Nassiopoulos E (2011a) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:1–35Google Scholar
  49. Kalia S, Avérous L, James Njuguna J, Alain Dufresne A, Cherian BM (2011b) Natural fibers, bio- and nanocomposites. Int J Polym Sci 2011(Article ID 735932).  10.1155/2011/735932
  50. Khalid Rehman H, Mohammad J, Rashid U (2014) Biomass and bioenergy: processing and properties, vol 1. Springer International Publishing, ChamGoogle Scholar
  51. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44(1):120–127CrossRefGoogle Scholar
  52. Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil H, Salema A, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410. doi: 10.1016/j.matdes.2012.10.044
  53. Matsumoto R, Arakawa M, Yoshida H, Akuzawa N (2012) Alkali-metal-graphite intercalation compounds prepared from flexible graphite sheets exhibiting high air stability and electrical conductivity. Synth Met 162(23):2149–2154CrossRefGoogle Scholar
  54. Mir A, Zitoune R, Collombet F, Bezzazi B (2010) Study of mechanical and thermomechanical properties of jute/epoxy composite laminate. J Reinf Plast Compos 29(11):1669–1680CrossRefGoogle Scholar
  55. Mohanty A, Misra M, Drzal L (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26CrossRefGoogle Scholar
  56. Najar SS, Kaynak A, Foitzik RC (2007) Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synth Met 157(1):1–4CrossRefGoogle Scholar
  57. Prajer M, Ansell MP (2014) Bio‐composites for structural applications: poly‐l‐lactide reinforced with long sisal fiber bundles. J Appl Polym SciGoogle Scholar
  58. Rashedi A, Sridhar I, Tseng KJ (2012) Multi-objective material selection for wind turbine blade and tower: Ashby’s approach. Mater Des 37:521–532CrossRefGoogle Scholar
  59. Sapuan SM, Pua F-l, El-Shekeil Y, AL-Oqla FM (2013) Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Mater Des 50:467–470Google Scholar
  60. Sarikanat M (2010) The influence of oligomeric siloxane concentration on the mechanical behaviors of alkalized jute/modified epoxy composites. J Reinf Plast Compos 29(6):807–817CrossRefGoogle Scholar
  61. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34(9):982–1021CrossRefGoogle Scholar
  62. Thakur V, Singha A, Thakur M (2012) Biopolymers based green composites: Mechanical, thermal and physico-chemical characterization. J Polym Environ 20(2):412–421CrossRefGoogle Scholar
  63. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93(1):90–98CrossRefGoogle Scholar
  64. Ye Y, Chen H, Wu J, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48(21):6426–6433CrossRefGoogle Scholar
  65. Yusriah L, Sapuan S, Zainudin ES, Mariatti M (2014) Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J Clean Prod 72:174–180CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringThe Hashemite UniversityZarqaJordan

Personalised recommendations