Advertisement

Mechanical and Thermal Properties of Polypropylene Reinforced with Doum Fiber: Impact of Fibrillization

  • Hamid Essabir
  • Mohammad Jawaid
  • Abou el kacem QaissEmail author
  • Rachid BouhfidEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Natural lignocellulosic materials have an excellent potential as thermoplastic reinforcement. In this study fibrillar doum fibers have been used as a dispersed phase in commodity thermoplastic matrices. Raw fiber was chemically treated with sodium hydroxide solutions and then fibrillated using physical treatments. The specimens were evaluated for structural, morphological, thermal and mechanical properties by infrared spectroscopy, scanning electron, thermogravemetric analysic and dynamical mechanical tests. The obtained results indicated that tensile strengths of the fibrillization treated composites enhanced 16.2 % as compared to 8.5 % for unfibrillar one due to improvement in the interfacial bonding. In addition, for strain at yield, the results are significantly higher than unfibrillar fiber composite, which demonstrated the effectiveness of the fibrillization treatment. At higher fiber content (16 wt%), the glass temperature values of the fibrillar composites are higher (87 °C) than that of unfibrillar composite (86 °C) and for unreinforced PP (78 °C) and it may be attributed to the higher interfacial adhesion in the fibrillar composite. The improvement of mechanical properties achieved, indicates the potential use of composites in many environmentally friendly industrial applications. Fibrillar doum fiber appears to be a good alternative to obtain ecological products.

Keywords

Polymer-matrix composites (PMCs) Mechanical testing Thermal analysis 

References

  1. Arrakhiz FZ, El Achaby M, Benmoussa K, Bouhfid R, Essassi EM, Qaiss A (2012a) Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Mater Des 40:528–535CrossRefGoogle Scholar
  2. Arrakhiz FZ, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012b) Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des, 35:318–322Google Scholar
  3. Arrakhiz FZ, El Achaby M, Kakou CA, Vaudreuil S, Benmoussa K, Bouhfid R, Fassi-Fehri O, Qaiss A (2012c) Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: impact of chemical treatments. Mater Des 37:379–383CrossRefGoogle Scholar
  4. Arrakhiz FZ, El Achaby M, Malha M, Bensalah MO, Fassi-Fehri O, Bouhfid R, Benmoussa K, Qaiss A (2013a) Mechanical and thermal properties of natural fibers reinforced polymer composites: doum/low density polyethylene. Mater Des 43:200–205Google Scholar
  5. Arrakhiz FZ, Malha M, Bouhfid R, Benmoussa K, Qaiss A (2013b) Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Compos Part B 47:35–41Google Scholar
  6. Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013c) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381CrossRefGoogle Scholar
  7. Bachtiar D, Sapuan SM, Hamdan MM (2008) The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater Des 29:1285–1290CrossRefGoogle Scholar
  8. Botaro VR, Gandini A, Belgacem N (2005) Heterogeneous chemical modification of cellulose for composite materials. J Thermoplast Compos 18:107–117CrossRefGoogle Scholar
  9. Boujmal R, Essabir H, Nekhlaoui S, Bensalah MO, Bouhfid R, Qaiss A (2014) Composite from Polypropylene and henna fiber: structural, mechanical and thermal properties. J Biobas Mater Bio 8(2):1–7Google Scholar
  10. Elkhaoulani A, Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Mechanical and thermal properties of polymer composite based on natural fibers: moroccan hemp fibers/polypropylene. Mater Des 49:203–208CrossRefGoogle Scholar
  11. El Mechtali FZ, Essabir H, Nekhlaoui S, Bensalah MO, Jawaid M, Bouhfid R, Qaiss A (2015) Mechanical and thermal properties of polypropylene reinforced with almond shell particles: impact of chemical treatments. J Bion Eng 12:483–494CrossRefGoogle Scholar
  12. Essabir H, Hilali E, Elgharad A, El Minor H, Imad A, Elamraoui A, Al Gaoudi O (2013a) Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater Des 49:442–448CrossRefGoogle Scholar
  13. Essabir H, Elkhaoulani A, Benmoussa K, Bouhfid R, Arrakhiz FZ, Qaiss A (2013b) Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites. Mater Des 51:780–788CrossRefGoogle Scholar
  14. Essabir H, Nekhlaoui S, Malha M, Bensalah MO, Arrakhiz FZ, Qaiss A, Bouhfid R (2013c) Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Mater Des 51:225–230CrossRefGoogle Scholar
  15. Essabir H, Bensalah MO, Bouhfid R, Qaiss A (2014) Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: mechanical and thermal properties. J Biobased Mat Bioenergy 8:344–351CrossRefGoogle Scholar
  16. Essabir H, EI Achaby M, Hilali EM, Bouhfid R, Qaiss A (2015a) Morphological, structural, thermal and tensile properties of high density polyethylene composites reinforced with treated argan nut shell particles. J Bion Eng 12:129–141Google Scholar
  17. Essabir H, Hilali E, El Minor H, Bensalah MO, Bouhfid R, Qaiss A (2015b) Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan luffa sponge/high density polyethylene. J Biobased Mat Bioenergy 9:350–357CrossRefGoogle Scholar
  18. Essabir H, Bensalahb MO, Rodrigue D, Bouhfida R, Qaiss A (2016) Structural, mechanical and thermal properties of bio based hybrid composites from waste coir residues: fibers and shell particles. Mech Mater 93:134–144CrossRefGoogle Scholar
  19. Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269–275CrossRefGoogle Scholar
  20. Kakou CA, Arrakhiz FZ, Trokourey A, Bouhfid R, Qaiss A, Rodrigue D (2014) Influence of coupling agent content on the properties of high density polyethylene composites reinforced with oil palm fibers. Mater Des 63:641–649CrossRefGoogle Scholar
  21. Kakou CA, Essabir H, Bensalah MO, Bouhfid R, Rodrigue D, Qaiss A (2015) Hybrid composites based on polyethylene and coir/oil palm fibers. J Reinfor Plast Comp. doi: 10.1177/0731684415596235 Google Scholar
  22. Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A-Appl Sci 37:80–91CrossRefGoogle Scholar
  23. Liu W, Mohanty AK, Askeland P, Drzal LT, Misra M (2004) Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J Mater Sci 39:1051–1054CrossRefGoogle Scholar
  24. Mahjoub R, Yatim JM, Sam ARM, Hashemi S (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113CrossRefGoogle Scholar
  25. Maldas D, Kokta BV (1989) Improving adhesion of wood fiber with polystyrene by chemical treatment of fiber with coupling agent and the influence on the mechanical properties of the composites. J Adhes Sci Technol 3:529–539CrossRefGoogle Scholar
  26. Malha M, Nekhlaoui S, Essabir H, Benmoussa K, Bensalah MO, Arrakhiz FZ, Bouhfid R, Qaiss A (2013) Mechanical and thermal properties of compatibilized polypropylene reinforced by Woven Doum. J Appl Polym Sci 130:4347–4356Google Scholar
  27. Manikandan NKC, Sabu T, Groeninck G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61:2519–2529CrossRefGoogle Scholar
  28. Mwaikambo L, Ansell MP (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angew Makromol Chem 272:108–16CrossRefGoogle Scholar
  29. Nekhlaoui S, Essabir H, Bensalah MO, Fassi-Fehri O, Qaiss A, Bouhfid R (2014) Fracture study of the composite using essential work of fracture method: PP–SEBS–g–MA/E1 clay. Mater Des 53:741–748CrossRefGoogle Scholar
  30. Nekhlaoui S, Essabir H, Kunal D, Sonakshi M, Bensalah MO, Bouhfid R, Qaiss A (2015) Comparative study for the talc and two kinds of moroccan clay as reinforcements in polypropylene-SEBS-g-MA matrix. Polym Compos 36:675–684CrossRefGoogle Scholar
  31. Rider AN, Arnott DR (2000) Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. Int J Adhes Adhes 20:209–220CrossRefGoogle Scholar
  32. Rongzhi L, Lin Y, Yiu-Wing M (1997) Application of plasma technologies in fibre reinforced polymer composites: a review of recent developments. Compos Part A 28:73–78CrossRefGoogle Scholar
  33. Qaiss AEK, Bouhfid R, Essabir H (2014) Natural fibers reinforced polymeric matrix: thermal, mechanical and interfacial properties. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy: processing and properties. Springer International Publishing, Switzerland, pp 225–244Google Scholar
  34. Qaiss AEK, Bouhfid R, Essabir H (2015a) Characterization and use of coir, almond, apricot, argan, shells, and wood as reinforcement in the polymeric matrix in order to valorize these products. In: Hakeem KR, Jawaid M, Alothman OY (eds) Biomass and bioenergy agricultural biomass based potential materials. Springer International Publishing, Switzerland, pp 305–339Google Scholar
  35. Qaiss AEK, Bouhfid R, Essabir H (2015b) Effect of processing conditions on the mechanical and morphological properties of composites reinforced by natural fibres. In: Salit MS, Jawaid M, Yusoff NB, Enamul Hoque M (eds) Manufacturing of natural fibre reinforced polymer composites (pp 177–197). Springer International Publishing, SwitzerlandGoogle Scholar
  36. Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2013) Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Mater Des 49:285–289CrossRefGoogle Scholar
  37. Sudhir KS, Gautam S, Arup C (2011) Dynamic mechanical analysis of randomly oriented short bagasse/coir hybrid fibre-reinforced epoxy novolac composites. Fiber Polym 12:506–513CrossRefGoogle Scholar
  38. Santulli C, Janssen Mand Jeronimidis G (2005) Partial replacement of E-glass fibers with flax fibers in composites and effect on falling weight impact performance. J Mater Sci 40:3581–3585Google Scholar
  39. Väntsi O, Kärki T (2014) Utilization of recycled mineral wool as filler in wood—polypropylene composites. Constr Build Mater 55:220–226CrossRefGoogle Scholar
  40. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics. Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  41. Xiang L, Bingrong L, Zhidan L, Langhuan H, Shaozao T, Xiang C (2014) The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Mater Des 53:419–424CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Laboratory of Polymer ProcessingInstitute of Nanomaterials and Nanotechnology (NANOTECH)RabatMorocco
  2. 2.Laboratory of Biocomposite TechnologyInstitute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM)SerdangMalaysia

Personalised recommendations