Advertisement

Kenaf-Biocomposites: Manufacturing, Characterization, and Applications

  • Majid Niaz Akhtar
  • Abu Bakar Sulong
  • Muhammad Shahid Nazir
  • Khaliq MajeedEmail author
  • Mohd. Khairul Fadzly Radzi
  • Nur Farhani Ismail
  • Muhammad Rafi Raza
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Given the environmental issues faced by the industry, the development of engineering products from natural resources has increased worldwide. The increasing demand for cost and weight reduction can be attained by sustainable manufacturing techniques. Kenaf plants are natural resources, which show high performance compared with other natural fibers. Kenaf fibers can be modified by physical and chemical methods. Kenaf polymer composites are fabricated via processing technologies based on thermoforming, thermoplastics, and thermosets. Thermoplastic processes, such as compression molding, pultrusion, extrusion, and solution blending, have been adapted but are limited to two-dimensional structures based on polymer composites. However, the thermoset processes include sheet molding and resin transfer molding techniques, which were also employed for the fabrication of kenaf polymer composites. Most of the recent work discussed Kenaf-Reinforced Composites (KRCs) prepared by compression molding. However, resin transfer molding has received attention because of its versatility. This chapter aimed to highlight and explore advance research related to the fabrication of kenaf polymer composites by various routes, as well as their physical and mechanical properties. A brief description of KRCs with different additives, fiber loadings, treatment, and polymers is also discussed. Furthermore, these KRCs with versatile mechanical properties may be used for construction, building materials, animal beds, corrosion resistance, marine, electrical, transportation, and automotive applications.

Keywords

Natural fibers Injection moulding Compression moulding Resin transfer moulding Physical properties Mechanical properties Automation 

References

  1. Akbarzadeh A, Sadeghi M (2011) Parameter study in plastic injection molding process using statistical methods and IWO algorithm. Int J Model Optim 1:141CrossRefGoogle Scholar
  2. Akil H, Omar M, Mazuki A, Safiee S, Ishak ZM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121CrossRefGoogle Scholar
  3. Angelov I, Wiedmer S, Evstatiev M, Friedrich K, Mennig G (2007) Pultrusion of a flax/polypropylene yarn. Compos A Appl Sci Manuf 38:1431–1438CrossRefGoogle Scholar
  4. Anuar H, Zuraida A (2011) Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre. Compos B Eng 42:462–465CrossRefGoogle Scholar
  5. Anuar H, Zuraida A, Kovacs J, Tabi T (2011) Improvement of mechanical properties of injection-molded polylactic acid–kenaf fiber biocomposite. J Thermoplast Compos Mater 0892705711408984Google Scholar
  6. Arjmandi R, Hassan A, Majeed K, Zakaria Z (2015) Rice husk filled polymer composites. Int J Polym Sci 2015Google Scholar
  7. Avella M, Bogoeva-Gaceva G, Bužarovska A, Errico ME, Gentile G, Grozdanov A (2008) Poly(lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci 108:3542–3551CrossRefGoogle Scholar
  8. Aziz SH, Ansell MP, Clarke SJ, Panteny SR (2005) Modified polyester resins for natural fibre composites. Compos Sci Technol 65:525–535CrossRefGoogle Scholar
  9. Bajpai PK, Singh I, Madaan J (2012) Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J Reinf Plast Compos 31:1712–1724CrossRefGoogle Scholar
  10. Bernard M, Khalina A, Ali A, Janius R, Faizal M, Hasnah K, Sanuddin A (2011) The effect of processing parameters on the mechanical properties of kenaf fibre plastic composite. Mater Des 32:1039–1043CrossRefGoogle Scholar
  11. Bos HL, Müssig J, van den Oever MJ (2006) Mechanical properties of short-flax-fibre reinforced compounds. Compos A Appl Sci Manuf 37:1591–1604CrossRefGoogle Scholar
  12. Chen HL, Porter RS (1994) Composite of polyethylene and kenaf, a natural cellulose fiber. J Appl Polym Sci 54:1781–1783CrossRefGoogle Scholar
  13. Chen Y, Sun L, Chiparus O, Negulescu I, Yachmenev V, Warnock M (2005) Kenaf/ramie composite for automotive headliner. J Polym Environ 13:107–114CrossRefGoogle Scholar
  14. Choi HY, Lee JS (2012) Effects of surface treatment of ramie fibers in a ramie/poly (lactic acid) composite. Fibers Polym 13:217–223CrossRefGoogle Scholar
  15. Clemons CM, Caulfield DF (eds) (2005) Natural fibers. Functional fillers for plastics. Wiley-VCH Verlag GmbH & Co. KGaA, GermanyGoogle Scholar
  16. Davoodi M, Sapuan S, Ahmad D, Ali A, Khalina A, Jonoobi M (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31:4927–4932CrossRefGoogle Scholar
  17. Dehbari N, Moazeni N, Rahman WA (2014) Effects of kenaf core on properties of poly (lactic acid) bio-composite. Polym Compos 35:1220–1227Google Scholar
  18. Deka H, Misra M, Mohanty A (2013) Renewable resource based “all green composites” from kenaf biofiber and poly (furfuryl alcohol) bioresin. Ind Crops Prod 41:94–101CrossRefGoogle Scholar
  19. Du Y, Zhang J, Wang C, Lacy TE Jr, Xue Y, Toghiani H, Horstemeyer MF, Pittman CU Jr (2010) Kenaf bast fiber bundle-reinforced unsaturated polyester composites. II: water resistance and composite mechanical properties improvement. Forest Prod J 60:366CrossRefGoogle Scholar
  20. Edeerozey AM, Akil HM, Azhar A, Ariffin MZ (2007) Chemical modification of kenaf fibers. Mater Lett 61:2023–2025CrossRefGoogle Scholar
  21. El-Shekeil Y, Sapuan S, Zainudin E, Khalina A (2011) Effect of fiber loading on the mechanical properties of kenaf fiber reinforced thermoplastic polyurethane composite. Key Eng Mater 1213:1058CrossRefGoogle Scholar
  22. El-Shekeil Y, Sapuan S, Abdan K, Zainudin E (2012a) Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303CrossRefGoogle Scholar
  23. El-Shekeil Y, Sapuan S, Khalina A, Zainudin E, Al-Shuja’a O (2012b) Effect of alkali treatment on mechanical and thermal properties of Kenaf fiber-reinforced thermoplastic polyurethane composite. J Therm Anal Calorim 109:1435–1443 Google Scholar
  24. Faruk O, Sain M (2014) Biofiber reinforcements in composite materials. Elsevier, AmsterdamGoogle Scholar
  25. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  26. Feng Y, Hu Y, Zhao G, Yin J, Jiang W (2011) Preparation and mechanical properties of high-performance short ramie fiber-reinforced polypropylene composites. J Appl Polym Sci 122:1564–1571CrossRefGoogle Scholar
  27. Fung K, Li R, Tjong S (2002) Interface modification on the properties of sisal fiber-reinforced polypropylene composites. J Appl Polym Sci 85:169–176CrossRefGoogle Scholar
  28. Fung K, Xing X, Li R, Tjong S, Mai Y-W (2003) An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos Sci Technol 63:1255–1258CrossRefGoogle Scholar
  29. Gan S, Zakaria S, Chia CH, Kaco H, Padzil FNM (2014) Synthesis of kenaf cellulose carbamate using microwave irradiation for preparation of cellulose membrane. Carbohydr Polym 106:160–165CrossRefGoogle Scholar
  30. Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225CrossRefGoogle Scholar
  31. Glasser WG, Taib R, Jain RK, Kander R (1999) Fiber-reinforced cellulosic thermoplastic composites. J Appl Polym Sci 73:1329–1340CrossRefGoogle Scholar
  32. Groover MP (2007) Fundamentals of modern manufacturing: materials processes, and systems. Wiley, HobokenGoogle Scholar
  33. Hao A, Zhao H, Chen JY (2013) Kenaf/polypropylene nonwoven composites: the influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos B Eng 54:44–51CrossRefGoogle Scholar
  34. Hossain R, Islam A, Vuure V (2013) Processing dependent flexural strength variation of jute fiber reinforced epoxy composites. ARPN J Eng Appl Sci 8:513–518Google Scholar
  35. Hu R, Lim J-K (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41:1655–1669CrossRefGoogle Scholar
  36. Islam MS, Pickering KL, Foreman NJ (2010) Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly (lactic acid) (PLA) composites. Polym Degrad Stab 95:59–65CrossRefGoogle Scholar
  37. Islam MR, Beg MDH, Gupta A (2012) Characterization of alkali-treated Kenaf fibre-reinforced recycled polypropylene composites. J Thermoplast Compos Mater 0892705712461511Google Scholar
  38. Islam M, Beg M, Gupta A, Mina M (2013) Optimal performances of ultrasound treated kenaf fiber reinforced recycled polypropylene composites as demonstrated by response surface method. J Appl Polym Sci 128:2847–2856CrossRefGoogle Scholar
  39. Ismail A, Hassan A, Bakar AA, Jawaid M (2013) Flame retardancy and mechanical properties of kenaf filled polypropylene (PP) containing ammonium polyphosphate (APP). Sains Malaysiana 42:429–434Google Scholar
  40. Jawaid M, Khalil HA (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18CrossRefGoogle Scholar
  41. John MJ, Bellmann C, Anandjiwala RD (2010) Kenaf–polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites. Carbohydr Polym 82:549–554CrossRefGoogle Scholar
  42. Jonoobi M, Harun J, Tahir PM, Shakeri A, SaifulAzry S, Makinejad MD (2011) Physicochemical characterization of pulp and nanofibers from kenaf stem. Mater Lett 65:1098–1100CrossRefGoogle Scholar
  43. Joseph P, Joseph K, Thomas S (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol 59:1625–1640CrossRefGoogle Scholar
  44. Joseph S, Sreekala M, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62:1857–1868CrossRefGoogle Scholar
  45. Joshi SV, Drzal L, Mohanty A, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35:371–376CrossRefGoogle Scholar
  46. Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885CrossRefGoogle Scholar
  47. Karmakar P, Hazra S, Ramasubramanian T, Mandal R, Sinha M, Sen H (2008) Jute and allied fibre updates: production and technology. Cent Res Inst Jute Allied Fibres, Barrackpore 327Google Scholar
  48. Karmaker A, Youngquist J (1996) Injection molding of polypropylene reinforced with short jute fibers. J Appl Polym Sci 62:1147–1151CrossRefGoogle Scholar
  49. Karnani R, Krishnan M, Narayan R (1997) Biofiber-reinforced polypropylene composites. Polym Eng Sci 37:476–483CrossRefGoogle Scholar
  50. Khalil HA, Yusra AI, Bhat A, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind Crops Prod 31:113–121CrossRefGoogle Scholar
  51. Lee B-H, Kim H-S, Lee S, Kim H-J, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579CrossRefGoogle Scholar
  52. Lips SJ, de Heredia GMI, den Kamp RGO, van Dam JE (2009) Water absorption characteristics of kenaf core to use as animal bedding material. Ind Crops Prod 29:73–79CrossRefGoogle Scholar
  53. Liu W, Drzal LT, Mohanty AK, Misra M (2007) Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Compos B Eng 38:352–359CrossRefGoogle Scholar
  54. Mahjoub R, Yatim JM, Sam ARM, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113CrossRefGoogle Scholar
  55. Mahmoud DK, Salleh MAM, Karim WAWA, Idris A, Abidin ZZ (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: equilibrium, kinetic and thermodynamic studies. Chem Eng J 181:449–457CrossRefGoogle Scholar
  56. Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HPS, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Design 46:391–410Google Scholar
  57. Majeed K, Hassan A, Abu Bakar A (2015) Barrier, biodegradation, and mechanical properties of (rice husk)/(montmorillonite) hybrid filler‐filled low‐density polyethylene nanocomposite films. J Vinyl TechnolGoogle Scholar
  58. Majeed K, Hassan A, Bakar AA (2015) Tensile, oxygen barrier and biodegradation properties of rice husk-reinforced polyethylene blown films. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer, BerlinGoogle Scholar
  59. Majeed K, Hassan A, Bakar A, Jawaid M (2016) Effect of montmorillonite (MMT) content on the mechanical, oxygen barrier, and thermal properties of rice husk/MMT hybrid filler-filled low-density polyethylene nanocomposite blown films. J Thermoplast Compos 29(7):1003–1019CrossRefGoogle Scholar
  60. Mehta G, Mohanty A, Misra M, Drzal L (2004) Effect of novel sizing on the mechanical and morphological characteristics of natural fiber reinforced unsaturated polyester resin based bio-composites. J Mater Sci 39:2961–2964CrossRefGoogle Scholar
  61. Meon MS, Othman MF, Husain H, Remeli MF, Syawal MSM (2012) Improving tensile properties of kenaf fibers treated with sodium hydroxide. Proc Eng 41:1587–1592CrossRefGoogle Scholar
  62. Mohanty A, Wibowo A, Misra M, Drzal L (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A Appl Sci Manuf 35:363–370CrossRefGoogle Scholar
  63. Nimmo B (2002) Kenaf fibers. Presentation of the 5th annual conference of the American Kenaf SocietyGoogle Scholar
  64. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286CrossRefGoogle Scholar
  65. Nitta Y, Goda K, Noda J, Lee W-I (2013) Cross-sectional area evaluation and tensile properties of alkali-treated kenaf fibres. Compos A Appl Sci Manuf 49:132–138CrossRefGoogle Scholar
  66. Nosbi N, Akil HM, Ishak ZM, Bakar AA (2010) Degradation of compressive properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Mater Des 31:4960–4964CrossRefGoogle Scholar
  67. Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452CrossRefGoogle Scholar
  68. Oksman K, Mathew AP, Långström R, Nyström B, Joseph K (2009) The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69:1847–1853CrossRefGoogle Scholar
  69. Pan P, Zhu B, Kai W, Serizawa S, Iji M, Inoue Y (2007) Crystallization behavior and mechanical properties of bio-based green composites based on poly(l-lactide) and kenaf fiber. J Appl Polym Sci 105:1511–1520CrossRefGoogle Scholar
  70. Panthapulakkal S, Sain M (2007) Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties. J Appl Polym Sci 103:2432–2441CrossRefGoogle Scholar
  71. Paridah MT, Basher AB, SaifulAzry S, Ahmed Z (2011) Retting process of some bast plant fibres and its effect on fibre quality: a review. Bioresources 6:5260–5281Google Scholar
  72. Pearce N, Guild F, Summerscales J (1998) An investigation into the effects of fabric architecture on the processing and properties of fibre reinforced composites produced by resin transfer moulding. Compos A Appl Sci Manuf 29:19–27CrossRefGoogle Scholar
  73. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63:283–293CrossRefGoogle Scholar
  74. Pracella M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E (2006) Functionalization, compatibilization and properties of polypropylene composites with hemp fibres. Compos Sci Technol 66:2218–2230CrossRefGoogle Scholar
  75. Puglia D, Biagiotti J, Kenny J (2005) A review on natural fibre-based composites—Part II: application of natural reinforcements in composite materials for automotive industry. J Nat Fibers 1:23–65CrossRefGoogle Scholar
  76. Rassmann S, Reid R, Paskaramoorthy R (2010) Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Compos A Appl Sci Manuf 41:1612–1619CrossRefGoogle Scholar
  77. Razak SIA, Rahman WAWA, Sharif NFA, Nayan NHM, Saidi MAA, Yahya MY (2013) Polyaniline-coated kenaf core and its effect on the mechanical and electrical properties of epoxy resin. Compos Interf 20:611–622CrossRefGoogle Scholar
  78. Richardson M, Zhang Z (2000) Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos A Appl Sci Manuf 31:1303–1310CrossRefGoogle Scholar
  79. Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64:629–644CrossRefGoogle Scholar
  80. Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol 66:895–906CrossRefGoogle Scholar
  81. Rowell RM, Tillman A-M, Simonson R (1986) A simplified procedure for the acetylation of hardwood and softwood flaxes for flakeboard production. J Wood Chem Technol 6:427–448CrossRefGoogle Scholar
  82. Rowell RM, Sanadi AR, Caulfield DF, Jacobson RE (1997) Utilization of natural fibers in plastic composites: problems and opportunities. Lignocellulosic-Plast Compos 23–51Google Scholar
  83. Rowell RM, Sanadi A, Jacobson R, Caulfield D (1999) Properties of kenaf/polypropylene composites. Kenaf properties, processing and products, 381–392Google Scholar
  84. Salleh FM, Hassan A, Yahya R, Azzahari AD (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos B Eng 58:259–266CrossRefGoogle Scholar
  85. Sosiati H, Wijayanti DA, Widyorini R (2014) Properties of the treated kenaf/polypropylene (PP) composites. Adv Mater Res, Trans Tech PublGoogle Scholar
  86. Sreekumar P, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67:453–461CrossRefGoogle Scholar
  87. Sreenivasan S, Ibraheem SA, Sulaiman S, Baharudin B, Ariffin MK, Abdan K (2014) Evaluation of combined treatments of natural fibers: kenaf, abaca and oil palm fibers using micromechanical and SEM methods. Adv Mater Res, Trans Tech PublGoogle Scholar
  88. Summerscales J, Dissanayake NP, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part 1–fibres as reinforcements. Compos A Appl Sci Manuf 41:1329–1335CrossRefGoogle Scholar
  89. Tawakkal IS, Cran MJ, Bigger SW (2014) Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Ind Crops Prod 61:74–83CrossRefGoogle Scholar
  90. Tran TPT, Bénézet J-C, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly (lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124CrossRefGoogle Scholar
  91. Van den Oever M, Snijder M (2008) Jute fiber reinforced polypropylene produced by continuous extrusion compounding, part 1: processing and ageing properties. J Appl Polym Sci 110:1009–1018CrossRefGoogle Scholar
  92. Vanegas JD, Patiño ID, Vargas CA (2013) Boundary element approaches for filling simulations of anisotropic reinforced preforms used in the resin transfer molding process. J Compos Mater 0021998313501917Google Scholar
  93. Westman MP, Fifield LS, Simmons KL, Laddha S, Kafentzis TA (2010) Natural fiber composites: a review. Pac Northwest Natl LabGoogle Scholar
  94. Yang Y, Ota T, Morii T, Hamada H (2011) Mechanical property and hydrothermal aging of injection molded jute/polypropylene composites. J Mater Sci 46:2678–2684CrossRefGoogle Scholar
  95. Zampaloni M, Pourboghrat F, Yankovich S, Rodgers B, Moore J, Drzal L, Mohanty A, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A Appl Sci Manuf 38:1569–1580CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Majid Niaz Akhtar
    • 1
    • 2
  • Abu Bakar Sulong
    • 1
  • Muhammad Shahid Nazir
    • 3
  • Khaliq Majeed
    • 3
    Email author
  • Mohd. Khairul Fadzly Radzi
    • 1
  • Nur Farhani Ismail
    • 1
  • Muhammad Rafi Raza
    • 4
  1. 1.Department of Mechanical and Materials Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan Malaysia (UKM)SelangorMalaysia
  2. 2.Department of PhysicsCOMSATS Institute of Information TechnologyLahorePakistan
  3. 3.Department of Chemical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  4. 4.Department of Mechanical EngineeringCOMSATS Institute of Information TechnologySahiwalPakistan

Personalised recommendations