Advertisement

Safety in Numbers? Group Privacy and Big Data Analytics in the Developing World

  • Linnet TaylorEmail author
Chapter
Part of the Philosophical Studies Series book series (PSSP, volume 126)

Abstract

This chapter argues that group privacy is a necessary element of a global perpective on privacy. Addressing the problem as a new epistemological phenomenon generated by big data analytics, it addresses three main questions: first, is this a privacy or a data protection problem, and what does this say about the way it may be addressed? Second, by resolving the problem of individual identifiability, do we resolve that of groups? And last, is a solution to this problem transferable, or do different places need different approaches? Focusing on cases drawn mainly from low- and middle-income countries, this chapter uses the issues of human mobility, disease tracking and drone data to demonstrate the tendency of big data to flow across categories and uses, its long half-life as it is shared and reused, and how these characteristics pose particular problems with regard to analysis on the aggregate level.

Keywords

Drones Epidemiology Migration Ebola Mapping Satellites Mobile phones Kenya Sudan Africa Data mining Predictive modelling 

Bibliography

  1. Barocas, S., and H. Nissenbaum. 2014. Big data’s end run around anonymity and consent. In Privacy, big data, and the public good: Frameworks for engagement, ed. J. Lane, V. Stodden, S. Bender, and H. Nissenbaum. Cambridge: Cambridge University Press.Google Scholar
  2. BBC News. 2012. Matternet: Swapping roads for flying drones. Accessed 15 Aug 2014 at http://www.bbc.com/future/story/20120209-i-say-to-you-today-i-hover-dream.
  3. Bengtsson, L., X. Lu, A. Thorson, R. Garfield, and J. von Schreeb. 2011. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Medicine 88: e1001083.CrossRefGoogle Scholar
  4. Bettencourt, L.M. 2014. The uses of big data in cities. Big Data 2(1): 12–22.CrossRefGoogle Scholar
  5. Blondel, V.D., M. Esch, C. Chan, F. Clérot, P. Deville, E. Huens, … C. Ziemlicki. 2012. Data for development: The d4d challenge on mobile phone data. arXiv preprint arXiv:1210.0137.Google Scholar
  6. Bloustein, E.J. 1978. Individual and group privacy. New Brunswick: Transaction Publishers.Google Scholar
  7. Blumenstock, J.E. 2012. Inferring patterns of internal migration from mobile phone call records: Evidence from Rwanda. Information Technology for Development 18(2): 107–125.Google Scholar
  8. Blumenstock, J.E., R. Chokkalingam, V. Gaikwad, and S. Kondepudi. 2014. Probabilistic inference of unknown locations: Exploiting collective behavior when individual data is scarce. In Proceedings of the fifth ACM symposium on computing for development, December, 103–112. ACM.Google Scholar
  9. Brdar, S., K. Gavric, D. Culibrk, and V. Crnojevic. 2015. Unveiling spatial epidemiology of HIV with mobile phone data. arXiv preprint arXiv:1503.06575.Google Scholar
  10. Caughlin, T.T., N. Ruktanonchai, M.A. Acevedo, K.K. Lopiano, O. Prosper, et al. 2013. Place-based attributes predict community membership in a mobile phone communication network. PLoS ONE 8(2): e56057.CrossRefGoogle Scholar
  11. Churchill, E. 2014. Philippines: Drones and spreadsheets to the rescue. http://blogs.worldbank.org/eastasiapacific/philippines-drones-and-spreadsheets-rescue.
  12. Crowe, A. 2013. United Nations’ drones: A sign of what’s to come? Accessed 15 Aug 2014 at https://www.privacyinternational.org/blog/united-nations-drones-a-sign-of-whats-to-come.
  13. de Montjoye, Y.A., C.A. Hidalgo, M. Verleysen, and V.D. Blondel. 2013. Unique in the crowd: The privacy bounds of human mobility. Scientific Reports 3: 1376.CrossRefGoogle Scholar
  14. Dugas, A.F., Y.H. Hsieh, S.R. Levin, J.M. Pines, D.P. Mareiniss, A. Mohareb, … R.E. Rothman. 2012. Google flu trends: Correlation with emergency department influenza rates and crowding metrics. Clinical Infectious Diseases 54(4): 463–469.Google Scholar
  15. Eindhoven News. 2014 Orange scent should stop aggression on Stratumseind. Acccessed online 6 Oct 2015 at http://www.eindhovennews.nl/news/26208-orange-scent-should-stop-aggression-on-stratumseind.html.
  16. Frias-Martinez, E., G. Williamson, and V. Frias-Martinez. 2011, October. An agent-based model of epidemic spread using human mobility and social network information. In Privacy, security, risk and trust (passat), 2011 ieee third international conference on and 2011 ieee third international conference on social computing (socialcom), 57–64. IEEE.Google Scholar
  17. Global Pulse. 2013. United Nations Global Pulse Information Sheet. Accessed online 19 Nov 2015 at: www.unglobalpulse.org.
  18. Global Pulse. 2014. Frequently asked questions: Data privacy. Online brief. Accessed 19 Nov 2015 at: http://www.unglobalpulse.org/about/faqs.
  19. Greenleaf, G. 2013. Sheherezade and the 101 data privacy laws: Origins, significance and global trajectories. Journal of Law, Information & Science 23(1): 4–49.Google Scholar
  20. GSMA. 2011. Mobile privacy principles. Accessed online 19 Nov 15 at: http://www.gsma.com/publicpolicy/wp-content/uploads/2012/03/gsmaprivacyprinciples2012.pdf.
  21. Haggerty, K.D., and R.V. Ericson. 2000. The surveillant assemblage. The British Journal of Sociology 51(4): 605–622.CrossRefGoogle Scholar
  22. Hildebrandt, M. 2013. Slaves to big data. Or are we?. Idp. Revista De Internet, Derecho y Política 16.Google Scholar
  23. Hildebrandt, M., and S. Gutwirth (eds.). 2008. Profiling the European citizen. Heidelberg: Springer.Google Scholar
  24. International Business Times. 2014. Were you a subject in facebook’s mood experiment? You’ll never know. Accessed 19 Nov 2015 at: http://www.ibtimes.com/were-you-subject-facebooks-mood-experiment-youll-never-know-1616970.
  25. ITU. 2013. The world in 2013. International Telecommunications Union. Accessed 19 Nov 2015 at http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013.pdf.
  26. Jaquet-Chiffelle, D.O. 2007. Direct and indirect profiling in the light of virtual persons. In: Profiling the European Citizen, eds. M. Hildebrandt and S. Gutwirth, 34–43. Springer.Google Scholar
  27. Jerven, M. 2013. Poor numbers: How we are misled by African development statistics and what to do about it. Ithaca: Cornell University Press.Google Scholar
  28. Kniveton, D., C. Smith, and S. Wood. 2011. Agent-based model simulations of future changes in migration flows for Burkina Faso. Global Environmental Change 21: S34–S40.CrossRefGoogle Scholar
  29. Kramer, A.D.I., J.E. Guillory, and J.T. Hancock. 2014. Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences 111(24): 8788–8790. Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1320040111.
  30. Lazer, D., R. Kennedy, G. King, and A. Vespignani. 2014. The parable of google flu: Traps in big data analysis. Science 343(6176): 1203–1205.Google Scholar
  31. Lima, A., M. De Domenico, V. Pejovic, and M. Musolesi. 2013. Exploiting cellular data for disease containment and information campaigns strategies in country-wide epidemics. arXiv preprint arXiv:1306.4534. Google Scholar
  32. Lyon, D. 2014. Surveillance, Snowden, and big data: Capacities, consequences, critique. Big Data & Society, 1(2), 2053951714541861.Google Scholar
  33. Mao, H., X. Shuai, Y.Y. Ahn, and J. Bollen. 2013. Mobile communications reveal the regional economy in Côte d’ Ivoire. In Proceedings of the 3rd conference on the analysis of mobile phone datasets (NetMob).Google Scholar
  34. McDonald, Sean M. 2016. Ebola: A big data disaster. Privacy, property, and the law of disaster experimentation. CIS Papers 2016.01, March 2016. http://cis-india.org/papers/ebola-a-big-data-disaster.
  35. Nissenbaum, H. 2010. Privacy in context: Technology, policy, and the integrity of social life. Palo Alto: Stanford University Press.Google Scholar
  36. NY Times. 2014. Clashes erupt as liberia sets an ebola quarantine. Accessed online 17 Mar 2015 at http://www.nytimes.com/2014/08/21/world/africa/ebola-outbreak-liberia-quarantine.html?_r=0.
  37. Orange. 2015. Data for development. http://www.d4d.orange.com/en/Accueil.
  38. Pindolia, D.K., A.J. Garcia, A. Wesolowski, D.L. Smith, C.O. Buckee, A.M. Noor, … A.J. Tatem. 2012. Human movement data for malaria control and elimination strategic planning. Malaria Journal, 11, 205.Google Scholar
  39. Raymond, N.A., B.L. Card, and I.L. Baker. 2014. A new forensics: Developing standard remote sensing methodologies to detect and document mass atrocities. Genocide Studies and Prevention: An International Journal 8(3): 33–48.CrossRefGoogle Scholar
  40. Richards, N.M. 2013. The dangers of surveillance. Harvard Law Review 126: 1934.Google Scholar
  41. Sharad, K., and G. Danezis. 2013 De-anonymizing D4D datasets. In Proceedings of the 13th privacy enhancing technologies symposium. July 10–12, 2013, Bloomington, Indiana, USA.Google Scholar
  42. Strandburg, K. 2014. Monitoring, datafication and consent: Legal approaches to privacy in the big data context. In Privacy, big data, and the public good: Frameworks for engagement, ed. J. Lane, V. Stodden, S. Bender, and H. Nissenbaum. Cambridge: Cambridge University Press.Google Scholar
  43. Talbot, D. 2013. Cell-phone data might help predict ebola’s spread. MIT Technology Review. Accessed 17 Sept 2014 at http://www.technologyreview.com/news/530296/cell-phone-data-might-help-predict-ebolas-spread/.
  44. Tatem, A.J., Y. Qiu, D.L. Smith, O. Sabot, A.S. Ali, and B. Moonen. 2009. The use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents. Malaria Journal, 8, 287.Google Scholar
  45. Taylor, L. 2016a. Data subjects or data citizens? Addressing the global regulatory challenge of big data. In Freedom and property of information: The philosophy of law meets the philosophy of technology, ed. M. Hildebrandt and B. van den Berg. New York: Routledge.Google Scholar
  46. Taylor, L. 2016b. No place to hide? The ethics and analytics of tracking mobility using mobile phone data. Environment and Planning D: Society and Space 34(2): 319–336.Google Scholar
  47. Team, W.E.R. 2014. Ebola virus disease in West Africa—The first 9 months of the epidemic and forward projections. New England Journal of Medicine 371(16): 1481–1495.CrossRefGoogle Scholar
  48. TechMtaa. 2012. Outcry over claims that M-Pesa details are used ‘To Register’ party members. Accessed 28 July 2014 at http://www.techmtaa.com/2012/01/16/outcry-over-claims-that-m-pesa-details-are-used-to-register-party-members/.
  49. Telecoms.com. 2014. Africa gets smart: Continent prepares for device revolution. Accessed online 17 Mar 2015 at http://telecoms.com/opinion/africa-gets-smart-continent-prepares-for-device-revolution/.
  50. Volkmann, W. 2014. Small drones for progress in international development projects. Post on LinkedIn, April 24, 2014. Accessed 15 Aug 2014 at https://www.linkedin.com/today/post/article/20140424005308-38421723-small-drones-for-progress-in-international-development-projects.
  51. Wesolowski, A., N. Eagle, A.J. Tatem, D.L. Smith, A.M. Noor, R.W. Snow, and C.O. Buckee. 2012. Quantifying the impact of human mobility on malaria. Science 338(6104): 267–270.CrossRefGoogle Scholar
  52. Wesolowski, A., C.O. Buckee, L. Bengtsson, E. Wetter, X. Lu, and A.J. Tatem. 2014. Commentary: Containing the Ebola outbreak–the potential and challenge of mobile network data. PLOS Current Outbreaks. Google Scholar
  53. WHO. 2014. World malaria report 2013. Geneva: World Health Organization.Google Scholar
  54. World Economic Forum. 2014. Data-driven development: Pathways for progress. New York: World Economic Forum.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tilburg Institute for Law, Technology and SocietyTilburg UniversityTilburgThe Netherlands

Personalised recommendations