Advertisement

Cell Counting by Regression Using Convolutional Neural Network

  • Yao Xue
  • Nilanjan Ray
  • Judith Hugh
  • Gilbert Bigras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9913)

Abstract

The ability to accurately quantitate specific populations of cells is important for precision diagnostics in laboratory medicine. For example, the quantization of positive tumor cells can be used clinically to determine the need for chemotherapy in a cancer patient. In this paper, we describe a supervised learning framework with Convolutional Neural Network (CNN) and cast the cell counting task as a regression problem, where the global cell count is taken as the annotation to supervise training, instead of following the classification or detection framework. To further decrease the prediction error of counting, we tune several cutting-edge CNN architectures (e.g. Deep Residual Network) into the regression model. As the final output, not only the cell count is estimated for an image, but also its spatial density map is provided. The proposed method is evaluated with three state-of-the-art approaches on three cell image datasets and obtain superior performance.

Keywords

Cell counting Convolution neural network Deep residual net Detection Classification 

References

  1. 1.
  2. 2.
    Goldhirsch, A., Gelber, R.D., Gnant, M., Piccart-Gebhart, M., Thrlimann, B., Coates, A.S., Winer, E.P., Senn, H.-J.: Tailoring therapies - improving the management of early breast cancer: St. gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol first published online 4 May 2015. doi: 10.1093/annonc/mdv221
  3. 3.
    Li, H., Zhang, C., Wang, X: Cross-scene crowd counting via deep convolutional neural network. In: Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  4. 4.
    Rimm, D.L., Camp, R.L., Chung, G.G.: Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat. Med. 8, 1323–1327 (2002)CrossRefGoogle Scholar
  5. 5.
    Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33415-3_43 CrossRefGoogle Scholar
  6. 6.
    Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., Szegedy, C., Liu, W.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (2014)Google Scholar
  7. 7.
    Yang, L., Liu, S., Cao, X., Wang, C., Zhang, H.: Deep people counting in extremely dense crowds. In: ACM International Conference on Multimedia (2015)Google Scholar
  8. 8.
    Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40763-5_51 CrossRefGoogle Scholar
  9. 9.
    Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: ICCV (2015)Google Scholar
  10. 10.
    Hart, N.S., Collin, S.P., Garza-Gisholt, E., Hemmi, J.M.: A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density. PLoS One 9(4), e93485 (2014)CrossRefGoogle Scholar
  11. 11.
    Cantaloni, C., Eccher, C., Bazzanella, I., Aldovini, D., Bragantini, E., Morelli, L., Cuorvo, L.V., Ferro, A., Gasperetti, F., Berlanda, G., Dalla Palma, P., Fasanella, S., Leonardi, E.: Proliferative activity in human breast cancer: Ki-67 automated evaluation and the influence of different ki-67 equivalent antibodies. Diagn. Pathol. (2011)Google Scholar
  12. 12.
    Tsang, Y.W., Cree, I.A., Snead, D.R.J., Rajpoot, N.M., Sirinukunwattana, K., Raza, S.E.A.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging (2016)Google Scholar
  13. 13.
    Ren, S., Sun, J., He, K., Zhang, X.: Deep residual learning for image recognition. In: CVPR (2015)Google Scholar
  14. 14.
    Sutskever, I., Krizhevsky, A., Hinton, G.E., Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  15. 15.
    Lebanoff, L., Idrees, H.: Counting in dense crowds using deep learning. In: CRCV (2015)Google Scholar
  16. 16.
    Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Neural Information Processing Systems (NIPS) (2010)Google Scholar
  17. 17.
    Lin, Z., Davis, L.S.: Shape-based human detection and segmentation via hierarchical part-template matching. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 32, 604–618 (2010)CrossRefGoogle Scholar
  18. 18.
    Liu, F., Yang, L.: A novel cell detection method using deep convolutional neural network and maximum-weight independent set. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 349–357. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24574-4_42 CrossRefGoogle Scholar
  19. 19.
    Habibzadeh, M., Krzyżak, A., Fevens, T.: White blood cell differential counts using convolutional neural networks for low resolution images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 263–274. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38610-7_25 CrossRefGoogle Scholar
  20. 20.
    Sivic, J., Rodriguez, M., Laptev, I., Audibert, J.-Y.: Density-aware person detection and tracking in crowds. In: IEEE International Conference on Computer Vision (ICCV) (2011)Google Scholar
  21. 21.
    Kholi, P., Barinova, O., Lempitsky, V.: On detection of multiple object instances using hough transforms. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 34, 1773–1784 (2012)CrossRefGoogle Scholar
  22. 22.
    Zisserman, A., Parkhi, O.M., Vedaldi, A.: Deep face recognition. In: BMVC (2015)Google Scholar
  23. 23.
    McShane, L.M., Gao, D., Hugh, J.C., Mastropasqua, M.G., Viale, G., Zabaglo, L.A., Penault-Llorca, F., Bartlett, J.M., Gown, A.M., Symmans, W.F., Piper, T., Mehl, E., Enos, R.A., Hayes, D.F., Dowsett, M., Nielsen, T.O., Polley, M.Y., Leung, S.C.: An international ki67 reproducibility study. J. Natl. Cancer Inst. 105(24), 1897–1906 (2013)CrossRefGoogle Scholar
  24. 24.
    Pujol, O., Seguí, S., Vitrià, J.: Learning to count with deep object features. In: Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  25. 25.
    Szegedy, C., Ioffe, S.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)Google Scholar
  26. 26.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)Google Scholar
  27. 27.
    Subburaman, V.B., Descamps, A., Carincotte, C.: Counting people in the crowd using a generic head detector. In: IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 470–475 (2012)Google Scholar
  28. 28.
    Messinger, J.D., Zhang, T., Bentley, M.J., Gutierrez, D.B., Ablonczy, Z., Smith, R.T., Sloan, K.R., Curcio, C.A., Ach, T., Huisingh, C., McGwin Jr., G.: Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 55(8), 4832–4841 (2014)CrossRefGoogle Scholar
  29. 29.
    Tota, K., Idrees, H.: Counting in dense crowds using deep features. In: CRCV (2015)Google Scholar
  30. 30.
    Wang, M., Wang, X.: Automatic adaptation of a generic pedestrian detector to a specific traffic scene. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  31. 31.
    Zisserman, A., Xie, W., Noble, J.A.: Microscopy cell counting with fully convolutional regression networks (2015)Google Scholar
  32. 32.
    Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: IEEE Computer Society Conference on IEEE International Conference on Computer Vision (ICCV) Vision and Pattern Recognition (CVPR) (2005)Google Scholar
  33. 33.
    Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T., Jia, Y., Shelhamer, E.: Caffe: convolutional architecture for fast feature embedding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  34. 34.
    Zhang, X., Chen, Y.: Study of cell behaviors on anodized tio 2 nanotube arrays with coexisting multi-size diameters. Nano-Micro Lett. 8, 61–69 (2015)Google Scholar
  35. 35.
    Xie, Y., Xing, F., Kong, X., Su, H., Yang, L.: Beyond classification: structured regression for robust cell detection using convolutional neural network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 358–365. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24574-4_43 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yao Xue
    • 1
  • Nilanjan Ray
    • 1
  • Judith Hugh
    • 2
  • Gilbert Bigras
    • 2
  1. 1.Department of Computing ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Department of Laboratory MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations