Advertisement

Simulation and Verification of Tip-Induced Polarization During Kelvin Probe Force Microscopy Measurements on Film Capacitors

  • D. A. Nielsen
  • V. N. PopokEmail author
  • K. Pedersen
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 186)

Abstract

Kelvin probe force microscopy (KPFM) is widely used as characterization tool on functional heterostructures and components but it often suffers from measurement artifacts on such structures because the presence of the biased cantilever tip transforms the actual surface potential. In this work we have developed a physics-based finite element model of KPFM measurements on dielectrics in order to investigate the impact of tip-induced polarization. The model is compared with experiments on film capacitors, where it is found that tip-induced polarization is a significant contributor to the potential profiles obtained by KPFM.

Keywords

Kelvin probe force microscopy Tip-induced polarization Electrostatic modelling 

Notes

Acknowledgments

This work is a part of the research activity within the Center of Reliable Power Electronics (CORPE) funded by the Innovation Fund Denmark.

References

  1. 1.
    Nonnenmacher, M., O’Boyle, M.P., Wickramasinghe, H.K.: Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991). doi: 10.1063/1.105227 ADSCrossRefGoogle Scholar
  2. 2.
    Melitz, W., Shen, J., Kummel, A.C., Lee, S.: Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011). doi: 10.1016/j.surfrep.2010.10.001 ADSCrossRefGoogle Scholar
  3. 3.
    Kou, L., Ma, Z., Li, Y.J., Naitoh, Y., Komiyama, M., Sugawara, Y.: Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback. Nanotechnology 26, 195701 (2015). doi: 10.1088/0957-4484/26/19/195701 ADSCrossRefGoogle Scholar
  4. 4.
    Barth, C., Henry, C.R.: Surface double layer on (001) surfaces of alkali halide crystals: a scanning force microscopy study. Phys. Rev. Lett. 98, 136804 (2007). doi: 10.1103/PhysRevLett.98.136804 ADSCrossRefGoogle Scholar
  5. 5.
    Nowak, R., Moraru, D., Mizuno, T., Jablonski, R., Tabe, M.: Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscop. Thin Solid Films 557, 249–253 (2014). doi: 10.1016/j.tsf.2013.08.115 ADSCrossRefGoogle Scholar
  6. 6.
    Popok, V.N., Kalabukhov, A., Gunnarsson, R., Lemeshko, S., Claeson, T., Winkler, D.: Kelvin probe force microscopy study of LaAlO3/SrTiO3 heterointerfaces. J. Adv. Microsc. Res. 5, 26–30 (2010). doi: 10.1166/jamr.2010.1020 CrossRefGoogle Scholar
  7. 7.
    Nielsen, D.A., Popok, V.N., Pedersen, K.: Modelling and experimental verification of tip-induced polarization in Kelvin probe force microscopy measurements on dielectric surfaces. J. Appl. Phys. 118, 195301 (2015). doi: 10.1063/1.4935811 ADSCrossRefGoogle Scholar
  8. 8.
    Bürgi, L., Sirringhaus, H., Friend, R.: Noncontact potentiometry of polymer field-effect transistors. Appl. Phys. Lett. 80, 2913–2915 (2002). doi: 10.1063/1.1470702 ADSCrossRefGoogle Scholar
  9. 9.
    Okamoto, T., Kitagawa, S., Inoue, N., Ando, A.: Electric field concentration in the vicinity of the interface between anode and degraded BaTiO3-based ceramics in multilayer ceramic capacitor. Appl. Phys. Lett. 98, 072905 (2011). doi: 10.1063/1.3555466 ADSCrossRefGoogle Scholar
  10. 10.
    Jiang, C.-S., Moutinho, H.R., Geisz, J.F., Al-Jassim, M.M.: Measurement of built-in electrical potential in III-V solar cells by scanning Kelvin probe microscopy. J. Appl. Phys. 93(12), 10035 (2003). doi: 10.1063/1.1573736 ADSCrossRefGoogle Scholar
  11. 11.
    Nielsen, D.A., Popok, V.N., Pedersen, K.: Electric field mapping inside metallized film capacitors. In: Proceedings of the IEEE Annual Reliability and Maintainability Symposium, (2015). doi: 10.1109/RAMS.2015.7105153
  12. 12.
    Yang, S., Bryant, A., Mawby, P., Xiang, D., Ran, L., Tavner, P.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011). doi: 10.1109/TIA.2011.2124436 CrossRefGoogle Scholar
  13. 13.
    Pedersen, K.B., Kristensen, P.K., Popok, V.N., Pedersen, K.: Micro-sectioning approach for quality and reliability assessment of wire bonding interfaces in IGBT modules. Microelectron. Reliab. 57, 1422–1426 (2013). doi: 10.1016/j.microrel.2013.07.010 CrossRefGoogle Scholar
  14. 14.
    Palermo, V., Palma, M., Samorì, P.: Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv. Mater. 18, 145–164 (2006). doi: 10.1002/adma.200501394 CrossRefGoogle Scholar
  15. 15.
    Elias, G., Glatzel, T., Meyer, E., Rosenwaks, Y.: The role of the cantilever in Kelvin probe force microscopy. Beilstein J. Nanotechnol. 2, 252–260 (2011). doi: 10.3762/bjnano.2.29 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Physics and NanotechnologyAalborg UniversityAalborgDenmark

Personalised recommendations