Energetics and Scanning Tunneling Microscopy Images of B and N Defects in Graphene Bilayer

  • Yoshitaka FujimotoEmail author
  • Susumu Saito
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 186)


We report energetics and scanning tunneling microscopy (STM) images of boron and nitrogen defects in bilayer graphene using a first-principles density-functional study. It is found that the formation energies of N-doped AB-stacked bilayer graphene depend on the substitution sites, while those of B-doped one possess almost the same values without depending on the substitution sites. The STM images of B and N defects in not only AB-stacked but also AA-stacked bilayer graphene are calculated. The STM images near B and N defects in upper layers of AA- as well as AB-stacked bilayer graphenes are found to be similar to each other, whereas those of undoped lower layers show different images.


Graphene Doping STM images First-principles calculations 



This work was supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005. Computations were partly done at Institute for Solid State Physics, the University of Tokyo, at Cybermedia Center of Osaka University, and at Global Scientific Information and Computing Center of the Tokyo Institute of Technology.


  1. 1.
    Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Berger, C., et al.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, Y., et al.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Castro, E.V., et al.: Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Williams, J.R., et al.: Quantum Hall Effect in a gate-controlled p-n junction of graphene. Science 317, 638–641 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Young, A.F., Kim, P.: Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009)CrossRefGoogle Scholar
  7. 7.
    Fujimoto, Y., Saito, S.: Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotubes. J. Phys: Conf. Ser. 302, 012006 (2011)ADSGoogle Scholar
  8. 8.
    Jeong, H.M., et al.: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Fujimoto, Y., Saito, S.: Hydrogen adsorption and anomalous electronic properties of nitrogen-doped graphene. J. Appl. Phys. 115, 153701 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Fujimoto, Y.: Formation, energetics, and electronic properties of graphene monolayer and bilayer doped with heteroatoms. Adv. Condens. Matter Phys. 2015, 571490 (2015)CrossRefGoogle Scholar
  11. 11.
    Fujimoto, Y., Saito, S.: Electronic structures and stabilities of bilayer graphene doped with boron and nitrogen. Surf. Sci. 634, 57–61 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, Z., et al.: Open and closed edges of graphene layers. Phys. Rev. Lett. 102, 015501 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)Google Scholar
  15. 15.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980)Google Scholar
  17. 17.
    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)Google Scholar
  18. 18.
    Yamauchi, J., et al.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 5586 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    Okada, H., et al.: Detailed analysis of scanning tunneling microscopy images of the Si(001) reconstructed surface with buckled dimers. Phys. Rev. B 63, 195324 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Fujimoto, Y., et al.: Theoretical study on the scanning tunneling microscopy image of Cl-adsorbed Si(001). Jpn. J. Appl. Phys. 42, 5267–5268 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Fujimoto, Y., et al.: Images of scanning tunneling microscopy on the Si(001)-p(2 × 2) reconstructed surface. Mater. Trans. 42, 2247–2252 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Fujimoto, Y., Oshiyama, A.: Atomic structures and energetics of 90° dislocation cores in Ge films on Si(001). Phys. Rev. B 81, 205309 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Zhao, L., et al.: Local atomic and electronic structure of boron chemical doping in monolayer graphene. Nano Lett. 13, 4659 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Fujimoto, Y., Saito, S.: Formation, stabilities and electronic properties of nitrogen defects in graphene. Phys. Rev. B 84, 245446 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Zhao, L., et al.: Visualizing individual nitrogen dopants in monolayer graphene. Science 324, 999–1003 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations