Advertisement

Freestanding Silicene

  • Seymur Cahangirov
  • Hasan Sahin
  • Guy Le Lay
  • Angel Rubio
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 930)

Abstract

Obtaining a freestanding 2D graphene flake is relatively easy because it has a naturally occurring 3D layered parent material, graphite, made up of graphene layers weakly bound to each other by van der Waals interaction. In fact, graphite is energetically more favorable than diamond (one the most stable and hard materials on Earth) that is the sp 3 hybridized allotrope of carbon. To prepare freestanding graphene, it is enough to come up with a smart procedure for isolating the weakly bound layers of graphite. The same is also true for other layered materials like hexagonal boron nitride, black phosphorus, metal dichalcogenides and oxides. Silicene, on the other hand, doesn’t have a naturally occurring 3D parent material since silicon atoms prefer sp 3 hybridization over sp 2 hybridization. This makes the synthesis of freestanding silicene very hard, if not impossible. However, it is possible to epitaxially grow silicene on metal substrates and make use of its intrinsic properties by transferring it to an insulating substrate (Tao et al. Nat Nanotechnol 10: 227–231, 2015). In this Chapter, we focus on intrinsic properties of freestanding silicene in the absence of the metallic substrate.

Keywords

Cohesive Energy Phonon Dispersion Topological Insulator Black Phosphorus Oxygen Adatoms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abersfelder, K., White, A.J.P., Rzepa, H.S., Scheschkewitz, D.: A tricyclic aromatic isomer of hexasilabenzene. Science 327, 564–566 (2010)ADSCrossRefGoogle Scholar
  2. Allen, P.B., Berlijn, T., Casavant, D.A., Soler, J.M.: Recovering hidden Bloch character: unfolding electrons, phonons, and slabs. Phys. Rev. B 87, 085322 (2013)ADSCrossRefGoogle Scholar
  3. An, R.L., Wang, X.F., Vasilopoulos, P., Liu, Y.S., Chen, A.B., Dong, Y.J., Zhai, M.X.: Vacancy effects on electric and thermoelectric properties of zigzag silicene nanoribbons. J. Phys. Chem. C 118, 21339–21346 (2014)CrossRefGoogle Scholar
  4. Barton, T.J., Burns, G.T.: Unambiguous generation and trapping of a silabenzene. J. Am. Chem. Soc. 100, 5246–5246 (1978)CrossRefGoogle Scholar
  5. Bianco, E., Butler, S., Jiang, S., Restrepo, O.D., Windl, W., Goldberger, J.E.: Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano 7, 4414–4421 (2013)CrossRefGoogle Scholar
  6. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)ADSCrossRefGoogle Scholar
  7. Brumfiel, G.: Sticky problem snares wonder material. Nature 495, 152–153 (2013)ADSCrossRefGoogle Scholar
  8. Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)ADSCrossRefGoogle Scholar
  9. Cahangirov, S., Topsakal, M., Ciraci, S.: Armchair nanoribbons of silicon and germanium honeycomb structures. Phys. Rev. B 81, 195120 (2010)ADSCrossRefGoogle Scholar
  10. Cahangirov, S., Özçelik, V.O., Xian, L., Avila, J., Cho, S., Asensio, M.C., Ciraci, S., Rubio, A.: Atomic structure of the \(\sqrt{3}\phantom{ \times }\sqrt{3}\) phase of silicene on Ag(111). Phys. Rev. B 90, 035448 (2014)ADSCrossRefGoogle Scholar
  11. Chen, L., Liu, C.C., Feng, B., He, X., Cheng, P., Ding, Z., Meng, S., Yao, Y., Wu, K.: Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 109, 056804 (2012)ADSCrossRefGoogle Scholar
  12. Cudazzo, P., Attaccalite, C., Tokatly, I.V., Rubio, A.: Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane. Phys. Rev. Lett. 104, 226804 (2010)ADSCrossRefGoogle Scholar
  13. Drummond, N.D., Zólyomi, V., Fal’ko, V.I.: Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012)ADSCrossRefGoogle Scholar
  14. Du, Y., Zhuang, J., Liu, H., Xu, X., Eilers, S., Wu, K., Cheng, P., Zhao, J., Pi, X., See, K.W., Peleckis, G., Wang, X., Dou, S.X.: Tuning the band gap in silicene by oxidation. ACS Nano 8, 10019–10025 (2014)CrossRefGoogle Scholar
  15. Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)ADSCrossRefGoogle Scholar
  16. Ezawa, M.: Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012)ADSCrossRefGoogle Scholar
  17. Feng, B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L., Wu, K.: Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 3507–3511 (2012)ADSCrossRefGoogle Scholar
  18. Guzmán-Verri, G.G., Lew Yan Voon, L.C.: Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007)Google Scholar
  19. Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)ADSCrossRefGoogle Scholar
  20. Hoffmann, R.: Small but strong lessons from chemistry for nanoscience. Angew. Chem. Int. Ed. 52, 93–103 (2013)ADSCrossRefGoogle Scholar
  21. Houssa, M., Scalise, E., Sankaran, K., Pourtois, G., Afanas’ev, V.V., Stesmans, A.: Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98, 223107 (2011)ADSCrossRefGoogle Scholar
  22. Hu, M., Zhang, X., Poulikakos, D.: Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013)ADSCrossRefGoogle Scholar
  23. Huang, B., Deng, H.X., Lee, H., Yoon, M., Sumpter, B.G., Liu, F., Smith, S.C., Wei, S.H.: Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys. Rev. X 4, 021029 (2014)Google Scholar
  24. Jahn, H.A., Teller, E.: Stability of polyatomic molecules in degenerate electronic states. I. orbital degeneracy. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 161, 220–235 (1937)CrossRefzbMATHGoogle Scholar
  25. Kaltsas, D., Tsetseris, L.: Stability and electronic properties of ultrathin films of silicon and germanium. Phys. Chem. Chem. Phys. 15, 9710–9715 (2013)CrossRefGoogle Scholar
  26. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  27. Krüger, P., Pollmann, J.: Dimer reconstruction of diamond, Si, and Ge (001) surfaces. Phys. Rev. Lett. 74, 1155–1158 (1995)ADSCrossRefGoogle Scholar
  28. Lander, J.J., Gobeli, G.W., Morrison, J.: Structural properties of cleaved silicon and germanium surfaces. J. Appl. Phys. 34 (1963)Google Scholar
  29. Lew Yan Voon, L.C., Sandberg, E., Aga, R.S., Farajian, A.A.: Hydrogen compounds of group-iv nanosheets. Appl. Phys. Lett. 97, 163114 (2010)Google Scholar
  30. Li, B., Zhou, L., Wu, D., Peng, H., Yan, K., Zhou, Y., Liu, Z.: Photochemical chlorination of graphene. ACS Nano 5, 5957–5961 (2011)CrossRefGoogle Scholar
  31. Liu, C.C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)ADSCrossRefGoogle Scholar
  32. Liu, B., Baimova, J.A., Reddy, C.D., Law, A.W.K., Dmitriev, S.V., Wu, H., Zhou, K.: Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation. ACS Appl. Mater. Interfaces 6, 18180–18188 (2014)CrossRefGoogle Scholar
  33. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)ADSCrossRefGoogle Scholar
  34. Morishita, T., Spencer, M.J.S.: How silicene on Ag(111) oxidizes: microscopic mechanism of the reaction of O2 with silicene. Sci. Rep. 5, 17570 (2015)ADSCrossRefGoogle Scholar
  35. Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H.M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., Geim, A.K.: Fluorographene: a two-dimensional counterpart of teflon. Small 6, 2877–2884 (2010)CrossRefGoogle Scholar
  36. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)ADSCrossRefGoogle Scholar
  37. Özçelik, V.O., Ciraci, S.: Local reconstructions of silicene induced by adatoms. J. Phys. Chem. C 117, 26305–26315 (2013)CrossRefGoogle Scholar
  38. Özçelik, V.O., Gurel, H.H., Ciraci, S.: Self-healing of vacancy defects in single-layer graphene and silicene. Phys. Rev. B 88, 045440 (2013)ADSCrossRefGoogle Scholar
  39. Özçelik, V.O., Cahangirov, S., Ciraci, S.: Stable single-layer honeycomblike structure of silica. Phys. Rev. Lett. 112, 246803 (2014)ADSCrossRefGoogle Scholar
  40. Pandey, K.C.: New π-bonded chain model for si(111)-(2×1) surface. Phys. Rev. Lett. 47, 1913–1917 (1981)ADSCrossRefGoogle Scholar
  41. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  42. Phillips, J.: Excitonic instabilities, vacancies, and reconstruction of covalent surfaces. Surf. Sci. 40, 459–469 (1973)ADSCrossRefGoogle Scholar
  43. Poppendieck, T.D., Ngoc, T.C., Webb, M.B.: An electron diffraction study of the structure of silicon (100). Surf. Sci. 75, 287–315 (1978)ADSCrossRefGoogle Scholar
  44. Qiu, J., Fu, H., Xu, Y., Oreshkin, A.I., Shao, T., Li, H., Meng, S., Chen, L., Wu, K.: Ordered and reversible hydrogenation of silicene. Phys. Rev. Lett. 114, 126101 (2015)ADSCrossRefGoogle Scholar
  45. Sahin, H., Peeters, F.M.: Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 87, 085423 (2013)ADSCrossRefGoogle Scholar
  46. Sahin, H., Sivek, J., Li, S., Partoens, B., Peeters, F.M.: Stone-Wales defects in silicene: Formation, stability, and reactivity of defect sites. Phys. Rev. B 88, 045434 (2013)ADSCrossRefGoogle Scholar
  47. Sahin, H., Leenaerts, O., Singh, S.K., Peeters, F.M.: Graphane. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 255–272 (2015)CrossRefGoogle Scholar
  48. Schlier, R.E., Farnsworth, H.E.: Structure and adsorption characteristics of clean surfaces of germanium and silicon. J. Chem. Phys. 30, 917 (1959)ADSCrossRefGoogle Scholar
  49. Si, C., Liu, J., Xu, Y., Wu, J., Gu, B.L., Duan, W.: Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 89, 115429 (2014)ADSCrossRefGoogle Scholar
  50. Sivek, J., Sahin, H., Partoens, B., Peeters, F.M.: Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Phys. Rev. B 87, 085444 (2013)ADSCrossRefGoogle Scholar
  51. Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)ADSCrossRefGoogle Scholar
  52. Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006a)ADSCrossRefGoogle Scholar
  53. Son, Y.W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006b)ADSCrossRefGoogle Scholar
  54. Takayanagi, K., Tanishiro, Y., Takahashi, S., Takahashi, M.: Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction. Surf. Sci. 164, 367–392 (1985)ADSCrossRefGoogle Scholar
  55. Takeda, K., Shiraishi, K.: Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916–14922 (1994)ADSCrossRefGoogle Scholar
  56. Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A., Akinwande, D.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015)ADSCrossRefGoogle Scholar
  57. Vogt, P., Capiod, P., Berthe, M., Resta, A., De Padova, P., Bruhn, T., Le Lay, G., Grandidier, B.: Synthesis and electrical conductivity of multilayer silicene. Appl. Phys. Lett. 104, 021602 (2014)ADSCrossRefGoogle Scholar
  58. Wang, R., Pi, X., Ni, Z., Liu, Y., Lin, S., Xu, M., Yang, D.: Silicene oxides: formation, structures and electronic properties. Sci. Rep. 3 (2013)Google Scholar
  59. Wang, X., Liu, H., Tu, S.T.: First-principles study of half-fluorinated silicene sheets. RSC Adv. 5, 6238–6245 (2015)CrossRefGoogle Scholar
  60. Wei, W., Jacob, T.: Strong many-body effects in silicene-based structures. Phys. Rev. B 88, 045203 (2013)ADSCrossRefGoogle Scholar
  61. Wierzbicki, M., Barnaś, J., Swirkowicz, R.: Thermoelectric properties of silicene in the topological- and band-insulator states. Phys. Rev. B 91, 165417 (2015)ADSCrossRefGoogle Scholar
  62. Xu, X., Zhuang, J., Du, Y., Feng, H., Zhang, N., Liu, C., Lei, T., Wang, J., Spencer, M., Morishita, T., Wang, X., Dou, S.X.: Effects of oxygen adsorption on the surface state of epitaxial silicene on Ag(111). Sci. Rep. 4, 7543 (2014)ADSCrossRefGoogle Scholar
  63. Yang, K., Cahangirov, S., Cantarero, A., Rubio, A., D’Agosta, R.: Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89, 125403 (2014)ADSCrossRefGoogle Scholar
  64. Zberecki, K., Wierzbicki, M., Barnaś, J., Swirkowicz, R.: Thermoelectric effects in silicene nanoribbons. Phys. Rev. B 88, 115404 (2013)ADSCrossRefGoogle Scholar
  65. Zberecki, K., Swirkowicz, R., Barnaś, J.: Spin effects in thermoelectric properties of Al- and P-doped zigzag silicene nanoribbons. Phys. Rev. B 89, 165419 (2014a)ADSCrossRefGoogle Scholar
  66. Zberecki, K., Swirkowicz, R., Wierzbicki, M., Barnas, J.: Enhanced thermoelectric efficiency in ferromagnetic silicene nanoribbons terminated with hydrogen atoms. Phys. Chem. Chem. Phys. 16, 12900–12908 (2014b)CrossRefGoogle Scholar
  67. Zhang, C.W., Yan, S.S.: First-principles study of ferromagnetism in two-dimensional silicene with hydrogenation. J. Phys. Chem. C 116, 4163–4166 (2012)CrossRefGoogle Scholar
  68. Zhang, R.Q., Chu, T.S., Cheung, H.F., Wang, N., Lee, S.T.: High reactivity of silicon suboxide clusters. Phys. Rev. B 64, 113304 (2001)ADSCrossRefGoogle Scholar
  69. Zhang, P., Li, X., Hu, C., Wu, S., Zhu, Z.: First-principles studies of the hydrogenation effects in silicene sheets. Phys. Lett. A 376, 1230–1233 (2012)ADSCrossRefGoogle Scholar
  70. Zheng, F.B., Zhang, C.W., Yan, S.S., Li, F.: Novel electronic and magnetic properties in N or B doped silicene nanoribbons. J. Mater. Chem. C 1, 2735–2743 (2013)CrossRefGoogle Scholar
  71. Zhang, W.B., Song, Z.B., Dou, L.M.: The tunable electronic structure and mechanical properties of halogenated silicene: a first-principles study. J. Mater. Chem. C 3, 3087–3094 (2015)CrossRefGoogle Scholar
  72. Zólyomi, V.Z., Wallbank, J.R., Fal’ko, V.I.: Silicane and germanane: tight-binding and first-principles studies. 2D Materials 1, 011005 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Seymur Cahangirov
    • 1
  • Hasan Sahin
    • 2
  • Guy Le Lay
    • 3
  • Angel Rubio
    • 4
  1. 1.University of the Basque Country, Materials Unit Joint CenterDonostiaSpain
  2. 2.Department of PhotonicsIzmir Institute of TechnologyIzmirTurkey
  3. 3.Aix Marseille Université CNRSMarseille CedexFrance
  4. 4.Basque Country, Materials Unit Joint CenterDonostiaSpain

Personalised recommendations