Advertisement

Top-K Shortest Paths in Large Typed RDF Datasets Challenge

  • Ioannis PapadakisEmail author
  • Michalis Stefanidakis
  • Phivos Mylonas
  • Brigitte Endres Niggemeyer
  • Spyridon Kazanas
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 641)

Abstract

Perhaps the most widely appreciated linked data principle instructs linked data providers to provide useful information using the standards (i.e., RDF and SPARQL). Such information corresponds to patterns expressed as SPARQL queries that are matched against the RDF graph. Until recently, patterns had to specify the exact path that would match against the underlying graph. The advent of the SPARQL 1.1 Recommendation introduced property paths as a new graph matching paradigm that allows the employment of Kleene star * (and its variant Kleene plus +) unary operators to build SPARQL queries that are agnostic of the underlying RDF graph structure. In this paper, we present the Top-k Shortest Paths in large typed RDF Datasets Challenge. It highlights the key aspects of property path queries that employ the Kleene star operator, presenting three widely different approaches.

Keywords

SPARQL 1.1 Property paths Navigational queries Kleene star ESWC 2016 

Supplementary material

References

  1. 1.
    Zhang, X., Van den Bussche, J.: On the power of SPARQL in expressing navigational queries. Comput. J. 58(11), 2841–2851 (2014)CrossRefGoogle Scholar
  2. 2.
    Gubichev, A., Bedathur, S.J., Seufert, S.: Sparqling kleene: fast property paths in RDF-3X. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, pp. 14:1–14:7. ACM, New York (2013)Google Scholar
  3. 3.
    Arenas, M., Conca, S., Perez, J.: Counting beyond a yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the standard. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 629–638. ACM, New York (2012)Google Scholar
  4. 4.
    Arenas, M., Gutierrez, C., Miranker, D.P., Perez, J., Sequeda, J.F.: Querying semantic data on the web? ACM SIGMOD Rec. 41(4), 6–17 (2013)CrossRefGoogle Scholar
  5. 5.
    Hassan, Z., Qadir, M. A., Islam, M. A., Shahzad, U., Akhter, N.: Modified MinG Algorithm to Find Top-K Shortest Paths from Large RDF Graphs. In: ESWC 2016Google Scholar
  6. 6.
    Hertling, S., Schroeder, M., Jilek, C., Dengel, A.: Top-K Shortest Paths in Directed, Labeled Multigraphs. In: ESWC 2016Google Scholar
  7. 7.
    De Vocht, L., Verborgh, R., Mannens, E, Van de Walle, R.: Using Triple Pattern Fragments to Enable Streaming of Top-K Shortest Paths via the Web. In: ESWC 2016Google Scholar
  8. 8.
    Barton, S.: Indexing graph structured data. Ph.D. thesis, Masaryk University, Brno, Czech Republic (2007)Google Scholar
  9. 9.
    Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    De Vocht, L., Beecks, C., Verborgh, R., Seidl, T., Mannens, E., Van de Walle, R.: Improving semantic relatedness in paths for storytelling with linked data on the web. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 31–35. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25639-9_6 CrossRefGoogle Scholar
  11. 11.
    Salvadores, M., Horridge, M., Alexander, P.R., Fergerson, R.W., Musen, M.A., Noy, N.F.: Using SPARQL to Query BioPortal Ontologies and MetadataGoogle Scholar
  12. 12.
    Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM 28(3), 594–614 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dietz, P.F.: Maintaining order in a linked list. In: STOC 1982: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 122–127. ACM Press, New York (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ioannis Papadakis
    • 1
    Email author
  • Michalis Stefanidakis
    • 2
  • Phivos Mylonas
    • 2
  • Brigitte Endres Niggemeyer
    • 3
  • Spyridon Kazanas
    • 1
  1. 1.School of Information Science and InformaticsIonian UniversityCorfuGreece
  2. 2.Department of InformaticsIonian UniversityCorfuGreece
  3. 3.HannoverGermany

Personalised recommendations