A Knowledge-Based Approach for Aspect-Based Opinion Mining

  • Marco Federici
  • Mauro DragoniEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 641)


In the last decade, the focus of the Opinion Mining field moved to detection of the pairs “aspect-polarity” instead of limiting approaches in the computation of the general polarity of a text. In this work, we propose an aspect-based opinion mining system based on the use of semantic resources for the extraction of the aspects from a text and for the computation of their polarities. The proposed system participated at the third edition of the Semantic Sentiment Analysis (SSA) challenge took place during ESWC 2016 achieving the runner-up place in the Task #2 concerning the aspect-based sentiment analysis. Moreover, a further evaluation performed on the SemEval 2015 benchmarks demonstrated the feasibility of the proposed approach.


Opinion Mining Sentiment Analysis Opinion Word Sentiment Lexicon General Inquirer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of EMNLP, Philadelphia, pp. 79–86. Association for Computational Linguistics, July 2002Google Scholar
  2. 2.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
  3. 3.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  4. 4.
    Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 415–463. Springer, Berlin (2012)CrossRefGoogle Scholar
  5. 5.
    Dragoni, M.: SHELLFBK: an information retrieval-based system for multi-domain sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation, SemEval 2015, Denver, Colorado, pp. 502–509. Association for Computational Linguistics, June 2015Google Scholar
  6. 6.
    Petrucci, G., Dragoni, M.: An information retrieval-based system for multi-domain sentiment analysis. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 234–243. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25518-7_20 CrossRefGoogle Scholar
  7. 7.
    Riloff, E., Patwardhan, S., Wiebe, J.: Feature subsumption for opinion analysis. In: EMNLP, pp. 440–448 (2006)Google Scholar
  8. 8.
    Wilson, T., Wiebe, J., Hwa, R.: Recognizing strong and weak opinion clauses. Comput. Intell. 22(2), 73–99 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dragoni, M., Tettamanzi, A.G., da Costa Pereira, C.: Propagating and aggregating fuzzy polarities for concept-level sentiment analysis. Cogn. Comput. 7(2), 186–197 (2015)CrossRefGoogle Scholar
  10. 10.
    Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 21–27. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    da Costa Pereira, C., Dragoni, M., Pasi, G.: A prioritized “and” aggregation operator for multidimensional relevance assessment. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS, vol. 5883, pp. 72–81. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25518-7_22 CrossRefGoogle Scholar
  13. 13.
    Jakob, N., Gurevych, I.: Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: EMNLP, pp. 1035–1045 (2010)Google Scholar
  14. 14.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)Google Scholar
  15. 15.
    Freitag, D., McCallum, A.: Information extraction with HMM structures learned by stochastic optimization. In: AAAI/IAAI, pp. 584–589 (2000)Google Scholar
  16. 16.
    Jin, W., Ho, H.H.: A novel lexicalized HMM-based learning framework for web opinion mining. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 465–472. ACM, New York (2009)Google Scholar
  17. 17.
    Jin, W., Ho, H.H., Srihari, R.K.: OpinionMiner: a novel machine learning system for web opinion mining and extraction. In: KDD, pp. 1195–1204 (2009)Google Scholar
  18. 18.
    Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: WWW, pp. 342–351 (2005)Google Scholar
  19. 19.
    Wu, Y., Zhang, Q., Huang, X., Wu, L.: Phrase dependency parsing for opinion mining. In: EMNLP, pp. 1533–1541 (2009)Google Scholar
  20. 20.
    Su, Q., Xu, X., Guo, H., Guo, Z., Wu, X., Zhang, X., Swen, B., Su, Z.: Hidden sentiment association in chinese web opinion mining. In: WWW, pp. 959–968 (2008)Google Scholar
  21. 21.
    Dragoni, M., Azzini, A., Tettamanzi, A.G.B.: A novel similarity-based crossover for artificial neural network evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 344–353. Springer, Heidelberg (2010)Google Scholar
  22. 22.
    Qiu, G., Liu, B., Bu, J., Chen, C.: Expanding domain sentiment lexicon through double propagation. In: IJCAI, pp. 1199–1204 (2009)Google Scholar
  23. 23.
    Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction through double propagation. Comput. Linguist. 37(1), 9–27 (2011)CrossRefGoogle Scholar
  24. 24.
    Cambria, E., Hussain, A.: Sentic Computing: Techniques, Tools, and Applications. SpringerBriefs in Cognitive Computation, vol. 2. Springer, Dordrecht (2012)Google Scholar
  25. 25.
    Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL, pp. 187–205 (2007)Google Scholar
  26. 26.
    Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: WWW, pp. 751–760 (2010)Google Scholar
  27. 27.
    Bollegala, D., Weir, D.J., Carroll, J.A.: Cross-domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans. Knowl. Data Eng. 25(8), 1719–1731 (2013)CrossRefGoogle Scholar
  28. 28.
    Yoshida, Y., Hirao, T., Iwata, T., Nagata, M., Matsumoto, Y.: Transfer learning for multiple-domain sentiment analysis–identifying domain dependent/independent word polarity. In: AAAI, pp. 1286–1291 (2011)Google Scholar
  29. 29.
    Ponomareva, N., Thelwall, M.: Semi-supervised vs. cross-domain graphs for sentiment analysis. In: RANLP, pp. 571–578 (2013)Google Scholar
  30. 30.
    Huang, S., Niu, Z., Shi, C.: Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl.-Based Syst. 56, 191–200 (2014)CrossRefGoogle Scholar
  31. 31.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  32. 32.
    Kipfer, B.A.: Roget’s 21st Century Thesaurus, 3rd edn. (2005)Google Scholar
  33. 33.
    Cambria, E., Speer, R., Havasi, C., Hussain, A.: SenticNet: a publicly available semantic resource for opinion mining. In: AAAI Fall Symposium: Commonsense Knowledge (2010)Google Scholar
  34. 34.
    Stone, P.J., Dunphy, D., Marshall, S.: The General Inquirer: A Computer Approach to Content Analysis. M.I.T. Press, Oxford (1966)Google Scholar
  35. 35.
    Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: Dranziera: an evaluation protocol for multi-domain opinion mining. In: Calzolari, N., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France. European Language Resources Association (ELRA), May 2016Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universitá di TrentoTrentoItaly
  2. 2.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations