Skip to main content

Vision Based Human Activity Recognition: A Review

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 513))

Abstract

Human activity recognition (HAR) is an important research area in computer vision due to its vast range of applications. Specifically, the past decade has witnessed enormous growth in its applications, such as Human Computer Interaction, intelligent video surveillance, ambient assisted living, entertainment, human-robot interaction, and intelligent transportation systems. This review paper provides a comprehensive state-of-the-art survey of different phases of HAR. Techniques related to segmentation of the image into physical objects, feature extraction, and activity classification are thoroughly reviewed and compared. Finally, the paper is concluded with research challenges and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11, 31–66 (2014)

    Article  MATH  Google Scholar 

  2. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. Circuits Syst. Video Technol. IEEE Trans. 18, 1473–1488 (2008)

    Google Scholar 

  3. Poppe, R.: A survey on vision-based human action recognition. Image Vision Comput. 28, 976–990 (2010)

    Article  Google Scholar 

  4. Ke, S.-R., Uyen, H.L., Lee, Y.-J., Hwang, J.-N., Yoo, J.-H., Choi, K.-H.: A review on video-based human activity recognition. Computers. 2, 88–131 (2013)

    Google Scholar 

  5. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. (CSUR) 43(3), 16 (2011)

    Article  Google Scholar 

  6. Ramanathan, M., Yau, W.-Y., Teoh, E.K.: Human action recognition with video data: research and evaluation challenges. Human-Mach. Syst. IEEE Trans. 44(5), 650–663 (2014)

    Article  Google Scholar 

  7. Aggarwal, J., Xia, L.: Human activity recognition from 3d data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)

    Article  Google Scholar 

  8. Ziaeefard, M., Bergevin, R.: Semantic human activity recognition: a literature review. Pattern Recogn. 48(8), 2329–2345 (2015)

    Article  Google Scholar 

  9. Morris, G., Angelov, P.: Real-time novelty detection in video using background subtraction techniques: State of the art a practical review. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE (2014)

    Google Scholar 

  10. Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vision Image Underst. 122, 4–21 (2014)

    Article  Google Scholar 

  11. Sobral, A.: BGSLibrary: An opencv c ++ background subtraction library. In: IX Workshop de Visao Computational (WVC’2013), Rio de Janeiro, Brazil (2013)

    Google Scholar 

  12. El Baf, F., Bouwmans, T., Vachon, B.: Foreground detection using the Choquet integral. In: WIAMIS’08. Ninth International Workshop on Image Analysis for Multimedia Interactive Services, 2008. IEEE (2008)

    Google Scholar 

  13. Toyama, K., et al.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999. IEEE (1999)

    Google Scholar 

  14. Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)

    Article  Google Scholar 

  15. Yao, J., Odobez, J.-M.: Multi-layer background subtraction based on color and texture. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE (2007)

    Google Scholar 

  16. Jian, X., et al.: Background subtraction based on a combination of texture, color and intensity. In: 9th International Conference on Signal Processing, 2008. ICSP 2008. IEEE (2008)

    Google Scholar 

  17. Jain, V., Kimia, B.B., Mundy, J.L.: Background modeling based on subpixel edges. In: IEEE International Conference on Image Processing, 2007. ICIP 2007. IEEE (2007)

    Google Scholar 

  18. Lai, A.H., Yung, N.H.: A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence. In: Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998. ISCAS’98. IEEE (1998)

    Google Scholar 

  19. Wren, C.R., et al.: Pfinder: Real-time tracking of the human body. Pattern Anal. Mach. Intell. IEEE Trans. 19(7), 780–785 (1997)

    Article  Google Scholar 

  20. Friedman, N., Russell, S.: Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc (1997)

    Google Scholar 

  21. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE (1999)

    Google Scholar 

  22. Hayman, E., Eklundh, J.-O.: Statistical background subtraction for a mobile observer. In: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003. IEEE (2003)

    Google Scholar 

  23. Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. 2004. IEEE

    Google Scholar 

  24. Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

  25. Tuzel, O., Porikli, F., Meer, P.: A bayesian approach to background modeling. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2005, CVPR Workshops. IEEE (2005)

    Google Scholar 

  26. Chen, Y.-T., et al.: Efficient hierarchical method for background subtraction. Pattern Recogn. 40(10), 2706–2715 (2007)

    Article  MATH  Google Scholar 

  27. Zhang, H., Xu, D.: Fusing color and texture features for background model. In: Third International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2006, Xi’an, China, 24–28 Sept 2006. Springer (2006)

    Google Scholar 

  28. El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE (2009)

    Google Scholar 

  29. Azab, M.M., Shedeed, H.A., Hussein, A.S.: A new technique for background modeling and subtraction for motion detection in real-time videos. In: ICIP (2010)

    Google Scholar 

  30. Sivabalakrishnan, M., Manjula, D.: Adaptive background subtraction in dynamic environments using fuzzy logic. Int. J.Video Image Process. Netw. Secur. 10(1) (2010)

    Google Scholar 

  31. Bouwmans, T.: Background subtraction for visual surveillance: a fuzzy approach. In: Handbook on Soft Computing for Video Surveillance, pp. 103–134 (2012)

    Google Scholar 

  32. Shakeri, M., et al.: A novel fuzzy background subtraction method based on cellular automata for urban traffic applications. In: 9th International Conference on Signal Processing, ICSP 2008. IEEE (2008)

    Google Scholar 

  33. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. Image Process. IEEE Trans. 17(7), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

  34. Culibrk, D., et al.: Neural network approach to background modeling for video object segmentation. Neural Netw. IEEE Trans. 18(6), 1614–1627 (2007)

    Article  Google Scholar 

  35. Maddalena, L., Petrosino, A.: A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection. Neural Comput. Appl. 19(2), 179–186 (2010)

    Article  Google Scholar 

  36. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. Pattern Anal. Mach. Intell. IEEE Trans. 22(8), 831–843 (2000)

    Article  Google Scholar 

  37. Goyat, Y., et al.: Vehicle trajectories evaluation by static video sensors. In: Intelligent Transportation Systems Conference, ITSC’06. IEEE (2006)

    Google Scholar 

  38. Godbehere, A.B., Matsukawa, A., Goldberg, K.: Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In: 2012 American Control Conference (ACC). IEEE (2012)

    Google Scholar 

  39. Permuter, H., Francos, J., Jermyn, I.: A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recogn. 39(4), 695–706 (2006)

    Article  MATH  Google Scholar 

  40. Yoon, S., et al.: Image classification using GMM with context information and with a solution of singular covariance problem. In: Proceedings of Data Compression Conference, DCC 2003. IEEE (2003)

    Google Scholar 

  41. Brendel, W., Todorovic, S.: Video object segmentation by tracking regions. In: IEEE 12th International Conference on Computer Vision, 2009. IEEE (2009)

    Google Scholar 

  42. Yu, T., et al.: Monocular video foreground/background segmentation by tracking spatial-color gaussian mixture models. In: IEEE Workshop on Motion and Video Computing, 2007. WMVC’07. IEEE (2007)

    Google Scholar 

  43. Gowsikhaa, D., Abirami, S., Baskaran, R.: Automated human behavior analysis from surveillance videos: a survey. Artif. Intell. Rev. 42(4), 747–765 (2014)

    Article  Google Scholar 

  44. Hu, W.-C., et al.: Moving object detection and tracking from video captured by moving camera. J. Visual Commun. Image Represent. (2015)

    Google Scholar 

  45. Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. Pattern Anal. Mach. Intell. IEEE Trans. 36(6), 1187–1200 (2014)

    Article  Google Scholar 

  46. Mak, C.-M., Cham, W.-K.: Fast video object segmentation using Markov random field. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing. IEEE (2008)

    Google Scholar 

  47. Cucchiara, R., Prati, A., Vezzani, R.: Real-time motion segmentation from moving cameras. Real-Time Imaging 10(3), 127–143 (2004)

    Article  Google Scholar 

  48. Jodoin, P., Mignotte, M., Rosenberger, C.: Segmentation framework based on label field fusion. Image Process. IEEE Trans. 16(10), 2535–2550 (2007)

    Article  MathSciNet  Google Scholar 

  49. Wang, Y.: Joint random field model for all-weather moving vehicle detection. Image Process. IEEE Trans. 19(9), 2491–2501 (2010)

    Article  MathSciNet  Google Scholar 

  50. Ghosh, A., Subudhi, B.N., Ghosh, S.: Object detection from videos captured by moving camera by fuzzy edge incorporated Markov random field and local histogram matching. Circuits Syst. Video Technol. IEEE Trans. 22(8), 1127–1135 (2012)

    Article  Google Scholar 

  51. Murali, S., Girisha, R.: Segmentation of motion objects from surveillance video sequences using temporal differencing combined with multiple correlation. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, 2009. AVSS’09. IEEE (2009)

    Google Scholar 

  52. Wan, Y., Wang, X., Hu, H.: Automatic moving object segmentation for freely moving cameras. Math. Probl. Eng. 2014 (2014)

    Google Scholar 

  53. Kumari, S., Mitra, S.K.: Human action recognition using DFT. In: 2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG). IEEE (2011)

    Google Scholar 

  54. He, Z., Jin, L.: Activity recognition from acceleration data based on discrete consine transform and svm. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009. IEEE (2009)

    Google Scholar 

  55. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  56. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th International Conference on Multimedia. ACM (2007)

    Google Scholar 

  57. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: European Conference on Computer Vision. Springer (2006)

    Google Scholar 

  58. Noguchi, A., Yanai, K.: A surf-based spatio-temporal feature for feature-fusion-based action recognition. In: European Conference on Computer Vision. Springer (2010)

    Google Scholar 

  59. Wang, H., et al.: A robust and efficient video representation for action recognition. Int. J. Comput. Vision 1–20 (2-15)

    Google Scholar 

  60. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE (2005)

    Google Scholar 

  61. Lu, W.-L., Little, J.J.: Simultaneous tracking and action recognition using the pca-hog descriptor. In: The 3rd Canadian Conference on Computer and Robot Vision, 2006. IEEE (2006)

    Google Scholar 

  62. Lin, C.-H., Hsu, F.-S., Lin, W.-Y.: Recognizing human actions using NWFE-based histogram vectors. EURASIP J. Adv. Signal Process. 2010, 9 (2010)

    Google Scholar 

  63. Hsu, F.-S., Lin, C.-H., Lin, W.-Y:. Recognizing human actions using curvature estimation and NWFE-based histogram vectors. In: Visual Communications and Image Processing (VCIP). IEEE (2011)

    Google Scholar 

  64. Kuo, B.-C., Landgrebe, D.A.: Nonparametric weighted feature extraction for classification. Geosci. Remote Sensing, IEEE Trans. 42(5), 1096–1105 (2004)

    Article  Google Scholar 

  65. Veeraraghavan, A., Roy-Chowdhury, A.K., Chellappa, R.: Matching shape sequences in video with applications in human movement analysis. Pattern Anal. Mach. Intell. IEEE Trans. 27(12), 1896–1909 (2005)

    Article  Google Scholar 

  66. Schindler, K., Van Gool, L.: Action snippets: How many frames does human action recognition require? In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE (2008)

    Google Scholar 

  67. Mahbub, U., Imtiaz, H., Ahad, A.: An optical flow-based action recognition algorithm. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  68. Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques. Pattern Recogn. 43–90 (2008)

    Google Scholar 

  69. Rahman, S.A., Cho, S.-Y., Leung, M.K.: Recognising human actions by analysing negative spaces. IET Comput. Vision 6(3), 197–213 (2012)

    Article  MathSciNet  Google Scholar 

  70. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006)

    Article  Google Scholar 

  71. Dargazany, A., Nicolescu, M.: Human body parts tracking using torso tracking: applications to activity recognition. In: 2012 Ninth International Conference on Information Technology: New Generations (ITNG). IEEE (2012)

    Google Scholar 

  72. Nakazawa, A., Kato, H., Inokuchi, S.: Human tracking using distributed vision systems. In: Proceedings of Fourteenth International Conference on Pattern Recognition, 1998. IEEE (1998)

    Google Scholar 

  73. Leung, M.K., Yang, Y.-H.: First sight: A human body outline labeling system. Pattern Anal. Mach. Intell. IEEE Trans. 17(4), 359–377 (1995)

    Article  MathSciNet  Google Scholar 

  74. Leong, I.-F., Fang, J.-J., Tsai, M.-J.: Automatic body feature extraction from a marker-less scanned human body. Comput. Aided Des. 39(7), 568–582 (2007)

    Article  Google Scholar 

  75. Rogez, G., Guerrero, J.J., Orrite, C.: View-invariant human feature extraction for video-surveillance applications. In: IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2007. IEEE (2007)

    Google Scholar 

  76. Yao, A., et al.: Does human action recognition benefit from pose estimation? In: BMVC (2011)

    Google Scholar 

  77. Sedai, S., Bennamoun, M., Huynh, D.: Context-based appearance descriptor for 3D human pose estimation from monocular images. In: Digital Image Computing: Techniques and Applications, DICTA’09. IEEE (2009)

    Google Scholar 

  78. Ramanan, D., Forsyth, D.A., Zisserman, A.: Tracking people by learning their appearance. Pattern Anal. Mach. Intell. IEEE Trans. 29(1), 65–81 (2007)

    Article  Google Scholar 

  79. Kaghyan, S., Sarukhanyan, H.: Activity recognition using K-nearest neighbor algorithm on smartphone with tri-axial accelerometer. In: International Journal of Informatics Models and Analysis (IJIMA), vol. 1, pp. 146–156. ITHEA International Scientific Society, Bulgaria (2012)

    Google Scholar 

  80. Gavrila, D., Davis, L.: Towards 3-d model-based tracking and recognition of human movement: a multi-view approach. In: International workshop on automatic face-and gesture-recognition. Citeseer (1995)

    Google Scholar 

  81. Veeraraghavan, A., Chellappa, R., Roy-Chowdhury, A.K.: The function space of an activity. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE (2006)

    Google Scholar 

  82. Sempena, S., Maulidevi, N.U., Aryan, P.R.: Human action recognition using dynamic time warping. In: 2011 International Conference on Electrical Engineering and Informatics (ICEEI). IEEE (2011)

    Google Scholar 

  83. Robertson, N., Reid, I.: A general method for human activity recognition in video. Comput. Vis. Image Underst. 104(2), 232–248 (2006)

    Article  Google Scholar 

  84. Chung, P.-C., Liu, C.-D.: A daily behavior enabled hidden Markov model for human behavior understanding. Pattern Recogn. 41(5), 1572–1580 (2008)

    Article  MATH  Google Scholar 

  85. Thuc, H.L.U., et al.: Quasi-periodic action recognition from monocular videos via 3D human models and cyclic HMMs. In:), 2012 International Conference on Advanced Technologies for Communications (ATC). IEEE (2012)

    Google Scholar 

  86. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  87. Reddy, K.K., Shah, M.: Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 24(5), 971–981 (2013)

    Article  Google Scholar 

  88. Qian, H., et al.: Recognition of human activities using SVM multi-class classifier. Pattern Recogn. Lett. 31(2), 100–111 (2010)

    Article  Google Scholar 

  89. Junejo, I.N., et al.: View-independent action recognition from temporal self-similarities. Pattern Anal. Mach. Intell. IEEE Trans. 33(1), 172–185 (2011)

    Article  Google Scholar 

  90. Bodor, R., Jackson, B., Papanikolopoulos, N.: Vision-based human tracking and activity recognition. In: Proceedings of the 11th Mediterranean Conference on Control and Automation. Citeseer (2003)

    Google Scholar 

  91. Chu, C.-T., et al.: Human tracking by adaptive Kalman filtering and multiple kernels tracking with projected gradients. In: 2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC). IEEE (2011)

    Google Scholar 

  92. Sengto, A., Leauhatong, T.: Human falling detection algorithm using back propagation neural network. In: Biomedical Engineering International Conference (BMEiCON), 2012. IEEE (2012)

    Google Scholar 

  93. Sharma, A., Lee, Y.-D., Chung, W.-Y.: High accuracy human activity monitoring using neural network. In: Third International Conference on Convergence and Hybrid Information Technology, ICCIT’08. IEEE (2008)

    Google Scholar 

  94. Ben-Arie, J., et al.: Human activity recognition using multidimensional indexing. Pattern Anal. Mach. Intell. IEEE Trans. 24(8), 1091–1104 (2002)

    Article  Google Scholar 

  95. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  96. Karpathy, A., et al.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2014)

    Google Scholar 

  97. Ijjina, E.P., Mohan, C.K.: Human action recognition based on motion capture information using fuzzy convolution neural networks. In: 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). IEEE (2015)

    Google Scholar 

  98. Toshev, A., Szegedy, C.: Deep pose: human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2014)

    Google Scholar 

  99. Ji, S., et al.: 3D convolutional neural networks for human action recognition. Pattern Anal. Mach. Intell. IEEE Trans. 35(1), 221–231 (2013)

    Article  Google Scholar 

  100. Gorelick, L., et al.: Actions as space-time shapes. Pattern Anal. Mach. Intell. IEEE Trans. 29(12), 2247–2253 (2007)

    Article  Google Scholar 

  101. Ke, Y., Sukthankar, R., Hebert, M.: Spatio-temporal shape and flow correlation for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR’07. IEEE (2007)

    Google Scholar 

  102. Dollár, P., et al.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. IEEE (2005)

    Google Scholar 

  103. Lu, X., Liu, Q., Oe, S.: Recognizing non-rigid human actions using joints tracking in space-time. In: Proceedings of International Conference on Information Technology: Coding and Computing, ITCC 2004. IEEE (2004)

    Google Scholar 

  104. Shechtman, E., Irani, M.: Space-time behavior based correlation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. IEEE (2005)

    Google Scholar 

  105. Danafar, S., Gheissari, N.: Action recognition for surveillance applications using optic flow and SVM. In: Computer Vision–ACCV 2007, pp. 457–466. Springer (2007)

    Google Scholar 

  106. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004. IEEE (2004)

    Google Scholar 

  107. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. IEEE (2009)

    Google Scholar 

  108. Sorenson, H.W.: Kalman Filtering: Theory and Application. IEEE (1960)

    Google Scholar 

  109. Deng, L.: Three classes of deep learning architectures and their applications: a tutorial survey. APSIPA Trans. Signal Inf. Process. (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allah Bux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bux, A., Angelov, P., Habib, Z. (2017). Vision Based Human Activity Recognition: A Review. In: Angelov, P., Gegov, A., Jayne, C., Shen, Q. (eds) Advances in Computational Intelligence Systems. Advances in Intelligent Systems and Computing, vol 513. Springer, Cham. https://doi.org/10.1007/978-3-319-46562-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46562-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46561-6

  • Online ISBN: 978-3-319-46562-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics