Skip to main content

Surgery for Scoliosis Correction

  • Chapter
  • First Online:

Abstract

Hemodynamic stability and integrity of the spinal cord are the major challenges for the safe conduct of anesthesia during scoliosis surgery. Given the extensive surgical exposure, dissection and vertebral distraction, the spinal cord and rootlets are at risk for injury. The purpose of case study is to review the pathophysiology underlying the scoliosis surgery and utility of intraoperative neuromonitoring and anesthetic techniques to minimize perioperative morbidity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7:3–9.

    Article  PubMed  Google Scholar 

  2. Huh S, Eun LY, Kim NK, Jung JW, Choi JY, Kim HS. Cardiopulmonary function and scoliosis severity in idiopathic scoliosis children. Korean J Pediatr. 2015;58(6):218–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Menga EN, Hirschfeld C, Jain A, Tran DP, Caine HD, Njoku DB, et al. Intraoperative cardiopulmonary arrest in children undergoing spinal deformity correction: causes and associated factors. Spine (Phila Pa 1976). 2015;40(22):1757–62.

    Article  Google Scholar 

  4. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  5. Sloan T. Anesthesia and intraoperative neurophysiological monitoring in children. Childs Nerv Syst. 2010;26(2):227–35.

    Article  PubMed  Google Scholar 

  6. Busso VO, McAuliffe JJ. Intraoperative neurophysiological monitoring in pediatric neurosurgery. Paediatr Anaesth. 2014;24(7):690–7.

    Article  PubMed  Google Scholar 

  7. Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 2012;78(8):585–9.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, et al. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am. 2007;89(11):2440–9.

    PubMed  Google Scholar 

  9. McCann ME, Brustowicz RM, Bacsik J, Sullivan L, Auble SG, Laussen PC. The bispectral index and explicit recall during the intraoperative wake-up test for scoliosis surgery. Anesth Analg. 2002;94(6):1474–8.

    PubMed  Google Scholar 

  10. Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet. 2004;363(9423):1757–63.

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoud M, Spaeth J, Sadhasivam S. Protection of tongue from injuries during transcranial motor-evoked potential monitoring. Paediatr Anaesth. 2008;18(9):902–3.

    Article  PubMed  Google Scholar 

  12. Kalkman CJ, Ubags LH, Been HD, Swaan A, Drummond JC. Improved amplitude of myogenic motor evoked responses after paired transcranial electrical stimulation during sufentanil/nitrous oxide anesthesia. Anesthesiology. 1995;83(2):270–6.

    Article  CAS  PubMed  Google Scholar 

  13. Pelosi L, Stevenson M, Hobbs GJ, Jardine A, Webb JK. Intraoperative motor evoked potentials to transcranial electrical stimulation during two anaesthetic regimens. Clin Neurophysiol. 2001;112(6):1076–87.

    Article  CAS  PubMed  Google Scholar 

  14. Ubags LH, Kalkman CJ, Been HD. Influence of isoflurane on myogenic motor evoked potentials to single and multiple transcranial stimuli during nitrous oxide/opioid anesthesia. Neurosurgery. 1998;43(1):90–4.

    Article  CAS  PubMed  Google Scholar 

  15. Ku AS, Hu Y, Irwin MG, Gunawardene S, Tan EE, Luk KD. Effect of sevoflurane/nitrous oxide versus propofol anaesthesia on somatosensory evoked potential monitoring of the spinal cord during surgery to correct scoliosis. Br J Anaesth. 2002;88(4):502–7.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz DM, Drummond DS, Hahn M, Ecker ML, Dormans JP. Prevention of positional brachial plexopathy during surgical correction of scoliosis. J Spinal Disord. 2000;13(2):178–82.

    Article  CAS  PubMed  Google Scholar 

  17. Patel NJ, Patel BS, Paskin S, Laufer S. Induced moderate hypotensive anesthesia for spinal fusion and Harrington-rod instrumentation. J Bone Joint Surg Am. 1985;67(9):1384–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gibson PR. Anaesthesia for correction of scoliosis in children. Anaesth Intensive Care. 2004;32(4):548–59.

    CAS  PubMed  Google Scholar 

  19. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27(4), E6.

    Article  PubMed  Google Scholar 

  20. Duffy MF, Phillips JH, Knapp DR, Herrera-Soto JA. Usefulness of electromyography compared to computed tomography scans in pedicle screw placement. Spine. 2010;35(2):E43–8.

    Article  PubMed  Google Scholar 

  21. Toleikis J. Neurophysiological monitoring during pedicle screw placement. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery. New York: Academic; 2002. p. 231–64.

    Chapter  Google Scholar 

  22. Noonan KJ, Walker T, Feinberg JR, Nagel M, Didelot W, Lindseth R. Factors related to false- versus true-positive neuromonitoring changes in adolescent idiopathic scoliosis surgery. Spine (Phila Pa 1976). 2002;27(8):825–30.

    Article  Google Scholar 

  23. Brustowicz RM, Hall JE. In defense of the wake-up test. Anesth Analg. 1988;67(10):1019.

    Article  CAS  PubMed  Google Scholar 

  24. Legatt AD. Current practice of motor evoked potential monitoring: results of a survey. J Clin Neurophysiol. 2002;19:454–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ellen McCann M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

McCann, M.E., Brustowicz, R.M., Soriano, S.G. (2017). Surgery for Scoliosis Correction. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics