Abstract
Most assistive robotic devices are exoskeletons which assist or augment the motion of the limbs and neglect the role of the spinal column in transferring load from the upper body and arms to the legs. In this part of the SPEXOR project we will fill this gap and design a novel, passive spinal exoskeleton to prevent low-back pain in able bodied workers and to support workers with low-back pain in vocational rehabilitation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buchbinder, R., Blyth, F.M., March, L.M., Brooks, P., Woolf, D.A., Hoy, D.G.: Placing the global burden of low back pain in context. Best Pract. Res.: Clin. Rheumatol. 27, 575–589 (2013)
Lambeek, L.C., van Tulder, M.W., Swinkels, I.C.S., Koppes, L.L.J., Anema, J.R., van Mechelen, W.: The trend in total cost of back pain in The Netherlands in the period 2002 to 2007. Spine 36(13), 1050–1058 (2011)
Bosch, T., van Eck, J., Knitel, K., de Looze, M.: The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 54, 212–217 (2016)
Waddell, G., Burton, A.K.: Occupational health guidelines for the management of low back pain at work: evidence review. Occup. Med. 51, 124–135 (2001)
Spinal Exoskeletal Robot for Low Back Pain Prevention and Vocational Reintegration. http://www.spexor.eu
Imamura, Y., Tanaka, T., Suzuki, Y., Takizawa, K., Yamanaka, M.: Motion-based design of elastic belts for passive assistive device using musculoskeletal model. In: International Conference on Robotics and Biomimetics, pp. 1343–1348 (2011)
Sadler, E.M., Graham, R.B., Stevenson, J.M.: The personal lift-assist device and lifting technique: a principal component analysis. Theoret. Issues Ergon. Sci. 0139, 1–16 (2011)
Ulrey, B.L., Fathallah, F.A.: Subject-specific, whole-body models of the stooped posture with a personal weight transfer device. J. Electromyogr. Kinesiol. 23(1), 206–215 (2013)
Imamura, Y., Tanaka, T., Suzuki, Y., Takizawa, K., Yamanaka, M.: Analysis of trunk stabilization effect by passive power-assist device. J. Robot. Mechatron. 26(6), 791–798 (2014)
Hoogendoorn, W.E., van Poppel, M.N.M., Bongers, P.M., Koes, B.W., Bouter, L.M.: Systematic review of psychosocial factors at work and private life as risk factors for back pain. Spine 25(16), 2114–2125 (2000)
Koser, K.: A cam mechanism for gravity-balancing. Mech. Res. Commun. 36(4), 523–530 (2009). doi:10.1016/j.mechrescom.2008.12.005
Acknowledgments
This work is funded by the European Commission under Grant agreement Nr. 687662. http://www.spexor.eu.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
De Rijcke, L. et al. (2017). SPEXOR: Towards a Passive Spinal Exoskeleton. In: González-Vargas, J., Ibáñez, J., Contreras-Vidal, J., van der Kooij, H., Pons, J. (eds) Wearable Robotics: Challenges and Trends. Biosystems & Biorobotics, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-46532-6_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-46532-6_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46531-9
Online ISBN: 978-3-319-46532-6
eBook Packages: EngineeringEngineering (R0)