Advertisement

Real-Time Modeling for Lower Limb Exoskeletons

  • Guillaume DurandauEmail author
  • Massimo Sartori
  • Magdo Bortole
  • Juan C. Moreno
  • José L. Pons
  • Dario Farina
Conference paper
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 16)

Abstract

Real-time electromyography (EMG) driven musculoskeletal (NMS) modeling estimates internal body biomechanical parameters and motor intentions. This is central for understanding the dynamics of user-exoskeleton interaction and for developing closed-loop user-exoskeleton interfaces that are intuitive and effective in promoting neuroplasticity. This abstract, presents methods and results behind the interfacing between a six degree of freedom lower limb exoskeleton (H2 exoskeleton, Technaid S.L., Spain) and a real-time EMG-driven NMS model of the human lower extremity.

Keywords

Root Mean Square Joint Torque Controller Area Network Position Controller Neuromusculoskeletal Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hidler, J., Nichols, D., Pelliccio, M., Brady, K., Campbell, D.D., Kahn, J.H., Hornby, T.G.: Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil. Neural Repair 23(1), 5–13 (2009)CrossRefGoogle Scholar
  2. 2.
    Pizzolato, C., Lloyd, D.G., Sartori, M., Ceseracciu, E., Besier, T.F., Fregly, B.J., Reggiani, M.: Ceinms: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J. Biomech. 48(14), 3929–3936 (2015)CrossRefGoogle Scholar
  3. 3.
    Sartori, M., Reggiani, M., van den Bogert, A.J., Lloyd, D.G.: Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional b-splines. J. Biomech. 45(3), 595–601 (2012)CrossRefGoogle Scholar
  4. 4.
    Sartori, M., Reggiani, M., Farina, D., Lloyd, D.G.: Emg-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PloS One 7, 12 (2011)Google Scholar
  5. 5.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  6. 6.
    Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J.C., Francisco, G.E., Pons, J.L., Contreras-Vidal, J.L.: The h2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J. Neuroeng. Rehabil. 12(1), 54 (2015)CrossRefGoogle Scholar
  7. 7.
    Sartori, M., Maculan, M., Pizzolato, C., Reggiani, M., Farina, D.: Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion. J. Neurophysiol. 114(4), 2509–2527 (2015)CrossRefGoogle Scholar
  8. 8.
    Sartori, M., Gizzi, L., Lloyd, D.G., Farina, D.: A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Frontiers Comput. Neurosci. 7 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Guillaume Durandau
    • 1
    Email author
  • Massimo Sartori
    • 1
  • Magdo Bortole
    • 2
  • Juan C. Moreno
    • 2
  • José L. Pons
    • 2
    • 3
  • Dario Farina
    • 1
  1. 1.Institute of Neurorehabilitation SystemsUniversitätmedizin GöttingenGöttingenGermany
  2. 2.Cajal Institute, CSICMadridSpain
  3. 3.Tecnológico de MonterreyMonterreyMexico

Personalised recommendations