Skip to main content

Transgenic Animal Models in Lung Research

  • Chapter
  • First Online:
Acute Lung Injury and Repair

Part of the book series: Respiratory Medicine ((RM))

  • 1071 Accesses

Abstract

The use of transgenic animals in pulmonary research has greatly evolved in the past decade as refinements in genetic techniques have enabled enhanced ability to manipulate gene expression in transgenic animals. An important milestone in the development of transgenic animals is the successful introduction of bacterial and eukaryotic recombinase and recombination sites into the mouse genome. This advancement has improved cell-type specificity in which genetic modification occurs and expanded the repertoire of techniques that direct temporal control of gene modification in transgenic animals. These advances have tremendous implications for lung research where the origin of cells implicated in lung pathogenesis and contributions to disease by specific cell types can now be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 27.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 27.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 27.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manis JP. Knock out, knock in, knock down–genetically manipulated mice and the Nobel Prize. N Engl J Med. 2007;357(24):2426–9.

    Article  CAS  PubMed  Google Scholar 

  2. Baron RM, Choi AJ, Owen CA, Choi AM. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L485–97.

    Article  CAS  PubMed  Google Scholar 

  3. Yoshida M, Korfhagen TR, Whitsett JA. Surfactant protein D regulates NF-kappa B and matrix metalloproteinase production in alveolar macrophages via oxidant-sensitive pathways. J Immunol. 2001;166(12):7514–9.

    Article  CAS  PubMed  Google Scholar 

  4. Leco KJ, Waterhouse P, Sanchez OH, Gowing KL, Poole AR, Wakeham A, Mak TW, Khokha R. Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Investig. 2001;108(6):817–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science. 1997;277(5334):2002–4.

    Article  CAS  PubMed  Google Scholar 

  6. Wang D, Wang W, Dawkins P, Paterson T, Kalsheker N, Sallenave JM, Houghton AM. Deletion of Serpina1a, a murine alpha1-antitrypsin ortholog, results in embryonic lethality. Exp Lung Res. 2011;37(5):291–300.

    Article  CAS  PubMed  Google Scholar 

  7. Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol. 1981;150(4):467–86.

    Article  CAS  PubMed  Google Scholar 

  8. Sternberg N, Hamilton D, Hoess R. Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome. J Mol Biol. 1981;150(4):487–507.

    Article  CAS  PubMed  Google Scholar 

  9. Abremski K, Hoess R. Phage P1 Cre-loxP site-specific recombination. Effects of DNA supercoiling on catenation and knotting of recombinant products. J Mol Biol. 1985;184(2):211–20.

    Article  CAS  PubMed  Google Scholar 

  10. Abremski K, Wierzbicki A, Frommer B, Hoess RH. Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. J Biol Chem. 1986;261(1):391–6.

    CAS  PubMed  Google Scholar 

  11. O’Gorman S, Fox DT, Wahl GM. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991;251(4999):1351–5.

    Article  PubMed  Google Scholar 

  12. Ghosh K, Van Duyne GD. Cre-loxP biochemistry. Methods. 2002;28(3):374–83.

    Article  CAS  PubMed  Google Scholar 

  13. Lewandoski M, Martin GR. Cre-mediated chromosome loss in mice. Nat Genet. 1997;17(2):223–5.

    Article  CAS  PubMed  Google Scholar 

  14. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21(1):70–1.

    Article  CAS  PubMed  Google Scholar 

  15. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BL. Type 2 alveolar cells are stem cells in adult lung. J Clin Investig. 2013;123(7):3025–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hung C, Linn G, Chow YH, Kobayashi A, Mittelsteadt K, Altemeier WA, Gharib SA, Schnapp LM, Duffield JS. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013;188(7):820–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BL. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA. 2011;108(52):E1475–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Investig. 2004;114(3):438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kleaveland KR, Velikoff M, Yang J, Agarwal M, Rippe RA, Moore BB, Kim KK. Fibrocytes are not an essential source of type I collagen during lung fibrosis. J Immunol. 2014;193(10):5229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perl AK, Wert SE, Nagy A, Lobe CG, Whitsett JA. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA. 2002;99(16):10482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kellendonk C, Tronche F, Monaghan AP, Angrand PO, Stewart F, Schutz G. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 1996;24(8):1404–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schutz G. Inducible site-specific recombination in the brain. J Mol Biol. 1999;285(1):175–82.

    Article  CAS  PubMed  Google Scholar 

  23. Minamino T, Gaussin V, DeMayo FJ, Schneider MD. Inducible gene targeting in postnatal myocardium by cardiac-specific expression of a hormone-activated Cre fusion protein. Circ Res. 2001;88(6):587–92.

    Article  CAS  PubMed  Google Scholar 

  24. Sando R 3rd, Baumgaertel K, Pieraut S, Torabi-Rander N, Wandless TJ, Mayford M, Maximov A. Inducible control of gene expression with destabilized Cre. Nat Methods. 2013;10(11):1085–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okubo T, Knoepfler PS, Eisenman RN, Hogan BL. Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development. 2005;132(6):1363–74.

    Article  CAS  PubMed  Google Scholar 

  26. Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH. Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Investig. 2011;121(7):2855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development. 2009;136(11):1899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Flodby P, Borok Z, Banfalvi A, Zhou B, Gao D, Minoo P, Ann DK, Morrisey EE, Crandall ED. Directed expression of Cre in alveolar epithelial type 1 cells. Am J Respir Cell Mol Biol. 2010;43(2):173–8.

    Article  CAS  PubMed  Google Scholar 

  29. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wamhoff BR, Sinha S, Owens GK. Conditional mouse models to study developmental and pathophysiological gene function in muscle. Handb Exp Pharmacol. 2007;178:441–68.

    Google Scholar 

  31. Wendling O, Bornert JM, Chambon P, Metzger D. Efficient temporally-controlled targeted mutagenesis in smooth muscle cells of the adult mouse. Genesis. 2009;47(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wirth A, Benyo Z, Lukasova M, Leutgeb B, Wettschureck N, Gorbey S, Orsy P, Horvath B, Maser-Gluth C, Greiner E, et al. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med. 2008;14(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230(2):230–42.

    Article  CAS  PubMed  Google Scholar 

  34. de Lange WJ, Halabi CM, Beyer AM, Sigmund CD. Germ line activation of the Tie2 and SMMHC promoters causes noncell-specific deletion of floxed alleles. Physiol Genomics. 2008;35(1):1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rawlins EL, Perl AK. The a”MAZE”ing world of lung-specific transgenic mice. Am J Respir Cell Mol Biol. 2012;46(3):269–82.

    Article  CAS  PubMed  Google Scholar 

  36. Chevalier C, Nicolas JF, Petit AC. Preparation and delivery of 4-hydroxy-tamoxifen for clonal and polyclonal labeling of cells of the surface ectoderm, skin, and hair follicle. Methods Mol Biol. 2014;1195:239–45.

    Google Scholar 

  37. Comai G, Sambasivan R, Gopalakrishnan S, Tajbakhsh S. Variations in the efficiency of lineage marking and ablation confound distinctions between myogenic cell populations. Dev Cell. 2014;31(5):654–67.

    Article  CAS  PubMed  Google Scholar 

  38. Lewandoski M. Conditional control of gene expression in the mouse. Nat Rev Genet. 2001;2(10):743–55.

    Article  CAS  PubMed  Google Scholar 

  39. Vooijs M, Jonkers J, Berns A. A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep. 2001;2(4):292–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hayashi S, McMahon AP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol. 2002;244(2):305–18.

    Article  CAS  PubMed  Google Scholar 

  41. Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP. Mammalian genomes contain active recombinase recognition sites. Gene. 2000;244(1–2):47–54.

    Article  CAS  PubMed  Google Scholar 

  42. Ito M, Yamanouchi K, Naito K, Calos MP, Tojo H. Site-specific integration of transgene targeting an endogenous lox-like site in early mouse embryos. J Appl Genet. 2011;52(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  43. Janbandhu VC, Moik D, Fassler R. Cre recombinase induces DNA damage and tetraploidy in the absence of loxP sites. Cell Cycle. 2014;13(3):462–70.

    Article  CAS  PubMed  Google Scholar 

  44. Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci USA. 2000;97(25):13702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iovino N, Denti MA, Bozzoni I, Cortese R. A loxP-containing pol II promoter for RNA interference is reversibly regulated by Cre recombinase. RNA Biol. 2005;2(3):86–92.

    Article  CAS  PubMed  Google Scholar 

  46. Lexow J, Poggioli T, Sarathchandra P, Santini MP, Rosenthal N. Cardiac fibrosis in mice expressing an inducible myocardial-specific Cre driver. Dis Model Mech. 2013;6(6):1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buerger A, Rozhitskaya O, Sherwood MC, Dorfman AL, Bisping E, Abel ED, Pu WT, Izumo S, Jay PY. Dilated cardiomyopathy resulting from high-level myocardial expression of Cre-recombinase. J Card Fail. 2006;12(5):392–8.

    Article  CAS  PubMed  Google Scholar 

  48. Koitabashi N, Bedja D, Zaiman AL, Pinto YM, Zhang M, Gabrielson KL, Takimoto E, Kass DA. Avoidance of transient cardiomyopathy in cardiomyocyte-targeted tamoxifen-induced MerCreMer gene deletion models. Circ Res. 2009;105(1):12–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heffner CS, Herbert Pratt C, Babiuk RP, Sharma Y, Rockwood SF, Donahue LR, Eppig JT, Murray SA. Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat Commun. 2012;3:1218.

    Google Scholar 

  50. Liu Y, Suckale J, Masjkur J, Magro MG, Steffen A, Anastassiadis K, Solimena M. Tamoxifen-Independent Recombination in the RIP-CreER Mouse. PLoS ONE. 2010;5(10):e13533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi F. Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hung, C.F., Altemeier, W.A. (2017). Transgenic Animal Models in Lung Research. In: Schnapp, L., Feghali-Bostwick, C. (eds) Acute Lung Injury and Repair. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46527-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46527-2_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46525-8

  • Online ISBN: 978-3-319-46527-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics