Integrating Medical Scientific Knowledge with the Semantically Quantified Self

  • Allan ThirdEmail author
  • George Gkotsis
  • Eleni Kaldoudi
  • George Drosatos
  • Nick Portokallidis
  • Stefanos Roumeliotis
  • Kalliopi Pafili
  • John Domingue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9981)


The assessment of risk in medicine is a crucial task, and depends on scientific knowledge derived by systematic clinical studies on factors affecting health, as well as on particular knowledge about the current status of a particular patient. Existing non-semantic risk prediction tools are typically based on hardcoded scientific knowledge, and only cover a very limited range of patient states. This makes them rapidly out of date, and limited in application, particularly for patients with multiple co-occurring conditions. In this work we propose an integration of Semantic Web and Quantified Self technologies to create a framework for calculating clinical risk predictions for patients based on self-gathered biometric data. This framework relies on generic, reusable ontologies for representing clinical risk, and sensor readings, and reasoning to support the integration of data represented according to these ontologies. The implemented framework shows a wide range of advantages over existing risk calculation.


Health Comorbidities Risk factor Scientific modelling Knowledge capture Semantics Ontology Linked data 



This work was supported by the FP7-ICT project CARRE (Grant No. 611140), funded in part by the European Commission. We express our gratitude to all project team members for fruitful discussions.


  1. 1.
    Sheridan, S., Pignone, M., Mulrow, C.: Framingham-based tools to calculate the global risk of coronary heart disease. J. Gen. Intern. Med. 18(12), 1039–1052 (2003)CrossRefGoogle Scholar
  2. 2.
    Boon, N., Boyle, R., Bradbury, K., Buckley, J., Connolly, S., Craig, S., Wood, D.: Joint British Societies’ consensus recommendations for the prevention of cardiovascular disease (JBS3). Heart 100(Suppl. 2), ii1–ii67 (2014)Google Scholar
  3. 3.
    Woodward, M., Brindle, P., Tunstall-Pedoe, H.: Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 93(2), 172–176 (2007)CrossRefGoogle Scholar
  4. 4.
    Kong, Y.M., Dahlke, C., Xiang, Q., Qian, Y., Karp, D., Scheuermann, R.H.: Toward an ontology-based framework for clinical research databases. J. Biomed. Inform. 44(1), 48–58 (2011)CrossRefGoogle Scholar
  5. 5.
    CDISC. Accessed 24 July 2015
  6. 6.
    Sim, I., Tu, S.W., Carini, S., Lehmann, H.P., Pollock, B.H., Peleg, M., Wittkowski, K.M.: The Ontology of Clinical Research (OCRe): an informatics foundation for the science of clinical research. J. Biomed. Inform. 52, 78–91 (2014)CrossRefGoogle Scholar
  7. 7.
    Third, A., Kaldoudi, E., Gkotsis, G., Roumeliotis, S., Pafili, K., Domingue, J.: Capturing scientific knowledge on medical risk factors. In: Workshop: 1st International Workshop on Capturing Scientific Knowledge at 8th International Conference on Knowledge Capture, Palisades, NY, USA (2015)Google Scholar
  8. 8.
    Rivera Pelayo, V.: Design and Application of Quantified Self Approaches for Reflective Learning in the Workplace. KIT Scientific Publishing, Karlsruhe (2015)Google Scholar
  9. 9.
    Cena, F., Likavec, S., Rapp, A., Deplano, M., Marcengo, A.: Ontologies for quantified self: a semantic approach. In: HT (Doctoral Consortium/Late-breaking Results/Workshops) (2014)Google Scholar
  10. 10.
    Semantic Web Rules Language.
  11. 11.
    Rules Interchange Format.
  12. 12.
    Reasoners and Rule Engines: Jena Inference Support.
  13. 13.
    RIF RDF and OWL compatibility.
  14. 14.
    Mrazek, P.B., Haggerty, R.J. (eds.): Reducing Risks for Mental Disorders: Frontiers for Preventive Intervention Research: Summary. National Academies Press, Washington, D.C (1994)Google Scholar
  15. 15.
    Kaplan, S.: The words of risk analysis. Risk Anal. 17(4), 407–417 (1997)CrossRefGoogle Scholar
  16. 16.
    Offord, D.R., Kraemer, H.C.: Risk factors and prevention. EBMH 3, 71 (2000)Google Scholar
  17. 17.
    Crowson, C.S., Therneau, T.M., Matteson, E.L., Gabriel, S.E.: Primer: demystifying risk - understanding and communicating medical risks. Nat. Clin. Pract. Rheumatol. 3(3), 181–187 (2007)CrossRefGoogle Scholar
  18. 18.
    ICD-10: International Classification of Diseases v10, WHO.
  19. 19.
    SNOMED-CT: Systemized Nomenclature of Medicine – Clinical Terms, IHTSDO.
  20. 20.
    RxNorm: Normalized Names for Clinical Drugs, U.S. National Library of Medicine.
  21. 21.
    EnvO: Environmental Ontology.
  22. 22.
    QUDT: Quantity, Unit, Dimension and Type Ontologies.
  23. 23.
    UO: The Ontology of Units of Measurement, OBO Foundry Initiative.
  24. 24.
    Oxford Centre for Evidence-Based Medicine Levels of Evidence. Produced by Howick, J., Chalmers, I., Glasziou, P., Greenhalgh, T., Heneghan, C., Liberati, A., Moschetti, I., Phillips, B., Thornton, H., Goddard, O., Hodgkinson, M. (2011)Google Scholar
  25. 25.
    UMLS: The Unified Medical Language System, US National Library of Medicine.
  26. 26.
  27. 27.
    CARRE Risk Data Entry system.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
    Virtuoso Universal Server.
  32. 32.
  33. 33.
  34. 34.
  35. 35.

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Allan Third
    • 1
    Email author
  • George Gkotsis
    • 2
  • Eleni Kaldoudi
    • 3
  • George Drosatos
    • 3
  • Nick Portokallidis
    • 3
  • Stefanos Roumeliotis
    • 3
  • Kalliopi Pafili
    • 3
  • John Domingue
    • 1
  1. 1.Knowledge Media InstituteOpen UniversityMilton KeynesUK
  2. 2.King’s College London, Biomedical Research Centre NucleusLondonUK
  3. 3.School of MedicineDemocritus University of ThraceAlexandroupoliGreece

Personalised recommendations