Skip to main content

Evaluation of the SimpopLocal Model

  • Chapter
  • First Online:
Urban Dynamics and Simulation Models

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

The SimpopLocal model exposes 6 free parameters that cannot be set using empirical data. This chapter presents how to evaluate SimpopLocal in spite of these degrees of freedom. A first evaluation establishes whether the model has the capacity to produce acceptable dynamics. To achieve this evaluation, the quality of the simulated dynamics is made explicit using a quantitative analysis. Based on this quantitative evaluation, an automated calibration algorithm is designed using a state-of-the-art multi-objective genetic algorithm. The results show that the model is able to produce acceptable dynamics. A second evaluation exposes the contribution of each free parameter to the capacity of the model to produce these acceptable dynamics. A novel sensitivity analysis algorithm called calibration profile is then applied. The results of this analysis show that the model can be simplified by removing one superfluous mechanism and one superfluous parameter and that all the remaining mechanisms are mandatory in the model and all the remaining parameters can be better constrained by narrowing down their definition domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Computed with \(\alpha = 1.36\).

  2. 2.

    https://en.wikipedia.org/wiki/Latin_hypercube_sampling.

  3. 3.

    https://en.wikipedia.org/wiki/Sobol_sequence.

  4. 4.

    Invented by Goldberg (1989) but first implemented by Deb in NSGA (Deb et al. 2000).

  5. 5.

    https://github.com/openmole/mgo.

  6. 6.

    http://www.egi.eu.

  7. 7.

    http://www.openmole.org.

  8. 8.

    https://github.com/Geographie-cites/spinger-simpoplocal.

  9. 9.

    https://github.com/openmole/mgo.

  10. 10.

    https://github.com/Geographie-cites/springer-simpoplocal.

  11. 11.

    Note that the profile algorithm iteratively refines the computed profiles from high values toward lower ones through through an iterative process, therefore the proposed bounds are more restrictive than the exact ones.

  12. 12.

    www.openmole.org.

References

  • Archaeomedes: Des oppida aux métropoles. Anthropos, Paris (1998)

    Google Scholar 

  • Bairoch, P.: De Jéricho à Mexico: villes et économie dans l’histoire. Gallimard, Paris (1985)

    Google Scholar 

  • Beaumont, M.A.: Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41(1), 379–406 (2010)

    Article  Google Scholar 

  • Belding, T.C.: The distributed genetic algorithm revisited. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 114–121 (1995)

    Google Scholar 

  • Branke, J.: Creating robust solutions by means of evolutionary algorithms. Parallel Problem Solving from Nature — PPSN V: 5th International Conference Amsterdam, The Netherlands September 27–30, 1998 Proceedings, pp. 119–128. Springer, Berlin (1998)

    Google Scholar 

  • Chérel, G., Cottineau, C., Reuillon, R.: Beyond corroboration: strengthening model validation by looking for unexpected patterns. PLoS ONE 10(9), 1–28 (2015)

    Google Scholar 

  • Christaller, W.: Die Zentralen Orte in Süddeutschland. Fischer, Jena (1933)

    Google Scholar 

  • Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. Lond. B: Biol. Sci. 280(1755), 20122863 (2013)

    Article  Google Scholar 

  • Cottineau, C., Chapron, P., Reuillon, R.: Growing models from the bottom up. An evaluation-based incremental modelling method (EBIMM) applied to the simulation of systems of cities. J. Artif. Soc. Soc. Simul. (JASSS), 18(4), 9. (2015) doi:10.18564/jasss.2828. http://jasss.soc.surrey.ac.uk/18/4/9.html

  • Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lect. Notes Comput. Sci. 1917, 849–858 (2000)

    Article  Google Scholar 

  • Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, p. 412. Addison-Wesley Press, Reading (1989)

    Google Scholar 

  • Johnson, G.: Aspects of regional analysis in archaeology. Annu. Rev. Anthr. 6, 479–508 (1977)

    Article  Google Scholar 

  • Kleijnen, J.: Design and Analysis of Simulation Experiments. Springer Publishing Company, Incorporated, New York (2007)

    Google Scholar 

  • Lenormand, M., Jabot, F., Deffuant, G.: Adaptive approximate Bayesian computation for complex models (2012)

    Google Scholar 

  • Liu, L.: Settlement patterns, chiefdom variability, and the development of early states in north China. J. Anthropol. Archaeol. 15(3), 237–288 (1996)

    Article  Google Scholar 

  • Marcus, J., Sabloff, J.A.: The Ancient City: New Perspectives on Urbanism in the Old and New World. Resident Schoolar Book, vol. 2005. School for Advanced Research, Santa Fe (2008)

    Google Scholar 

  • Mouret, J.-B.: An algorithm to create phenotype-fitness maps. In: Proceedings of the Thirteenth International Conference on the Simulation and Synthesis of Living Systems (ALIFE 13), pp. 593–594 (2013)

    Google Scholar 

  • Reuillon, R., Schmitt, C., Aldama, R.D., Mouret, J.: A new method to evaluate simulation models: the calibration profile (cp) algorithm. J. Artif. Soc. Soc. Simul. 18(1), 12 (2015)

    Google Scholar 

  • Rudolph, G.: A partial order approach to noisy fitness functions. In: Congress on Evolutionary Computation, Seoul, Korea, pp. 318–325. Press (2001)

    Google Scholar 

  • Sanders, L.: Regards croisés de géographes, économistes et archéologues sur la hiérarchie des systémes de peuplement: de l’empirie aux systémes complexes. Région et Développement, 36, (2012)

    Google Scholar 

  • Sano, Y., Kita, H.: Optimization of noisy fitness functions by means of genetic algorithms using history of search with test of estimation. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC’02, vol. 1, pp. 360–365 (2002)

    Google Scholar 

  • Schmitt, C.: Modélisation de la dynamique des systémes de peuplement: de SimpopLocal à SimpopNet. Ph.D. thesis, Université Paris 1 Panthéon-Sorbonne (2014)

    Google Scholar 

  • Stonedahl, F.J.: Genetic algorithms for the exploration of parameter spaces in agent-based models. Ph.D. thesis, Northwestern University of Illinois (2011)

    Google Scholar 

  • Tanooka, K., Tamaki, H., Abe, S., Kitamura, S.: A continuous age model of genetic algorithms applicable to optimization problems with uncertainties. In: IEEE International Conference on Systems, Man, and Cybernetics. IEEE SMC’99 Conference Proceedings, vol. 1, pp. 637–642 (1999)

    Google Scholar 

  • Weise, T.: Global Optimization Algorithms - Theory and Application, 3rd edn. (2011). www.it-weise.de

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Pumain .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pumain, D., Reuillon, R. (2017). Evaluation of the SimpopLocal Model. In: Urban Dynamics and Simulation Models. Lecture Notes in Morphogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-46497-8_3

Download citation

Publish with us

Policies and ethics